Refactoring: move out effects and VCR
This commit is contained in:
parent
f2057836eb
commit
8ea8ad27ce
@ -48,6 +48,9 @@
|
||||
<script src="./src/global-variables.js"></script>
|
||||
<script src="./src/utils.js"></script>
|
||||
<script src="./src/scene.js"></script>
|
||||
<script src="./src/effects_dust.js"></script>
|
||||
<script src="./src/effects_flies.js"></script>
|
||||
<script src="./src/vcr-display.js"></script>
|
||||
<script src="./src/init.js"></script>
|
||||
|
||||
<!-- 3D Canvas will be injected here by Three.js -->
|
||||
@ -124,480 +127,6 @@
|
||||
animate();
|
||||
}
|
||||
|
||||
function createBookshelf(x, z, rotationY, uniqueSeed) {
|
||||
seed = uniqueSeed; // Reset seed for this specific shelf instance
|
||||
|
||||
const shelfHeight = 2.2;
|
||||
const shelfDepth = 0.35;
|
||||
const shelfWidth = 1.2;
|
||||
const numShelves = 6;
|
||||
const woodThickness = 0.04;
|
||||
const woodColor = 0x5c4033; // Darker, richer wood
|
||||
|
||||
const shelfGroup = new THREE.Group();
|
||||
shelfGroup.position.set(x, 0, z);
|
||||
shelfGroup.rotation.y = rotationY;
|
||||
|
||||
const woodMaterial = new THREE.MeshPhongMaterial({ color: woodColor, shininess: 30 });
|
||||
|
||||
// 1. Build Frame (Hollow box)
|
||||
// Back Panel
|
||||
const backGeo = new THREE.BoxGeometry(shelfWidth, shelfHeight, woodThickness);
|
||||
const backPanel = new THREE.Mesh(backGeo, woodMaterial);
|
||||
backPanel.position.set(0, shelfHeight / 2, -shelfDepth / 2 + woodThickness / 2);
|
||||
backPanel.castShadow = true;
|
||||
backPanel.receiveShadow = true;
|
||||
shelfGroup.add(backPanel);
|
||||
|
||||
// Side Panels (Left & Right)
|
||||
const sideGeo = new THREE.BoxGeometry(woodThickness, shelfHeight, shelfDepth);
|
||||
const leftSide = new THREE.Mesh(sideGeo, woodMaterial);
|
||||
leftSide.position.set(-shelfWidth / 2 + woodThickness / 2, shelfHeight / 2, 0);
|
||||
leftSide.castShadow = true;
|
||||
leftSide.receiveShadow = true;
|
||||
shelfGroup.add(leftSide);
|
||||
|
||||
const rightSide = new THREE.Mesh(sideGeo, woodMaterial);
|
||||
rightSide.position.set(shelfWidth / 2 - woodThickness / 2, shelfHeight / 2, 0);
|
||||
rightSide.castShadow = true;
|
||||
rightSide.receiveShadow = true;
|
||||
shelfGroup.add(rightSide);
|
||||
|
||||
// Top & Bottom Panels
|
||||
const topBottomGeo = new THREE.BoxGeometry(shelfWidth, woodThickness, shelfDepth);
|
||||
const bottomPanel = new THREE.Mesh(topBottomGeo, woodMaterial);
|
||||
bottomPanel.position.set(0, woodThickness / 2, 0);
|
||||
bottomPanel.receiveShadow = true;
|
||||
shelfGroup.add(bottomPanel);
|
||||
|
||||
const topPanel = new THREE.Mesh(topBottomGeo, woodMaterial);
|
||||
topPanel.position.set(0, shelfHeight - woodThickness / 2, 0);
|
||||
topPanel.castShadow = true;
|
||||
shelfGroup.add(topPanel);
|
||||
|
||||
landingSurfaces.push(topPanel);
|
||||
|
||||
// 2. Individual Shelves & Books
|
||||
const internalHeight = shelfHeight - (2 * woodThickness);
|
||||
const shelfSpacing = internalHeight / numShelves;
|
||||
const internalWidth = shelfWidth - (2 * woodThickness);
|
||||
|
||||
for (let i = 0; i < numShelves; i++) {
|
||||
const currentShelfY = woodThickness + (i * shelfSpacing);
|
||||
|
||||
// Shelf board (skip for the very bottom one as we have a bottom panel)
|
||||
if (i > 0) {
|
||||
const shelfBoard = new THREE.Mesh(
|
||||
new THREE.BoxGeometry(internalWidth, woodThickness, shelfDepth - woodThickness), // Slightly shallower to fit inside back panel
|
||||
woodMaterial
|
||||
);
|
||||
shelfBoard.position.set(0, currentShelfY, woodThickness / 2); // Offset forward slightly
|
||||
shelfBoard.castShadow = true;
|
||||
shelfBoard.receiveShadow = true;
|
||||
shelfGroup.add(shelfBoard);
|
||||
}
|
||||
|
||||
// 3. Procedural Books
|
||||
let currentBookX = -internalWidth / 2 + 0.01; // Start at left inside edge
|
||||
const shelfSurfaceY = currentShelfY + woodThickness / 2;
|
||||
|
||||
while (currentBookX < internalWidth / 2 - 0.05) {
|
||||
// sizes vary
|
||||
const bookWidth = 0.02 + seededRandom() * 0.05;
|
||||
const bookHeight = (shelfSpacing * 0.6) + seededRandom() * (shelfSpacing * 0.1);
|
||||
const bookDepth = 0.15 + seededRandom() * 0.03;
|
||||
|
||||
if (currentBookX + bookWidth > internalWidth / 2) break;
|
||||
|
||||
const bookColor = getRandomColor();
|
||||
const bookMat = new THREE.MeshPhongMaterial({ color: bookColor, shininess: 60 });
|
||||
const bookGeo = new THREE.BoxGeometry(bookWidth, bookHeight, bookDepth);
|
||||
const book = new THREE.Mesh(bookGeo, bookMat);
|
||||
|
||||
// Position: Resting on shelf, pushed towards the back with slight random variation
|
||||
const depthVariation = seededRandom() * 0.05;
|
||||
book.position.set(
|
||||
currentBookX + bookWidth / 2,
|
||||
shelfSurfaceY + bookHeight / 2,
|
||||
-shelfDepth / 2 + woodThickness + bookDepth / 2 + depthVariation
|
||||
);
|
||||
|
||||
book.castShadow = true;
|
||||
book.receiveShadow = true;
|
||||
shelfGroup.add(book);
|
||||
|
||||
currentBookX += bookWidth + 0.002; // Tiny gap between books
|
||||
|
||||
if (seededRandom() > 0.92) {
|
||||
currentBookX += bookWidth * 3; // random bigger gaps
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
scene.add(shelfGroup);
|
||||
}
|
||||
|
||||
function createDoor(x, z, rotY) {
|
||||
const doorGroup = new THREE.Group();
|
||||
doorGroup.position.set(x, 1.1, z); // Centered vertically for a 2.2m door
|
||||
doorGroup.rotation.set(0, rotY, 0);
|
||||
|
||||
// Door Frame
|
||||
const frameMaterial = new THREE.MeshPhongMaterial({ color: 0x473e3a }); // Dark wood for frame
|
||||
const frameTop = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.1, 0.15), frameMaterial);
|
||||
frameTop.position.set(0, 1.15, 0);
|
||||
frameTop.castShadow = true;
|
||||
doorGroup.add(frameTop);
|
||||
|
||||
const frameLeft = new THREE.Mesh(new THREE.BoxGeometry(0.1, 2.3, 0.15), frameMaterial);
|
||||
frameLeft.position.set(-0.55, 0.05, 0);
|
||||
frameLeft.castShadow = true;
|
||||
doorGroup.add(frameLeft);
|
||||
|
||||
const frameRight = new THREE.Mesh(new THREE.BoxGeometry(0.1, 2.3, 0.15), frameMaterial);
|
||||
frameRight.position.set(0.55, 0.05, 0);
|
||||
frameRight.castShadow = true;
|
||||
doorGroup.add(frameRight);
|
||||
|
||||
// Main Door Panel
|
||||
const doorMaterial = new THREE.MeshPhongMaterial({ color: 0x8b5a2b, shininess: 10 }); // Lighter wood for door
|
||||
const door = new THREE.Mesh(new THREE.BoxGeometry(1.0, 2.2, 0.08), doorMaterial);
|
||||
door.castShadow = true;
|
||||
door.receiveShadow = true;
|
||||
doorGroup.add(door);
|
||||
|
||||
// Door Knob
|
||||
const knobMaterial = new THREE.MeshPhongMaterial({ color: 0xd4af37, shininess: 100 }); // Gold/Brass
|
||||
const knob = new THREE.Mesh(new THREE.SphereGeometry(0.05, 16, 16), knobMaterial);
|
||||
knob.position.set(0.4, 0, 0.06); // Position on the right side of the door
|
||||
knob.castShadow = true;
|
||||
doorGroup.add(knob);
|
||||
|
||||
scene.add(doorGroup);
|
||||
}
|
||||
|
||||
function createTvSet(x, z, rotY) {
|
||||
// --- Materials (MeshPhongMaterial) ---
|
||||
const darkWood = new THREE.MeshPhongMaterial({ color: 0x3d352e, shininess: 10 });
|
||||
const darkMetal = new THREE.MeshPhongMaterial({
|
||||
color: 0x6b6b6b,
|
||||
shininess: 80,
|
||||
specular: 0x888888
|
||||
});
|
||||
const tvPlastic = new THREE.MeshPhongMaterial({ color: 0x4d4d4d, shininess: 30 });
|
||||
|
||||
const tvGroup = new THREE.Group();
|
||||
|
||||
// --- TV Table Dimensions & Material ---
|
||||
const woodColor = 0x5a3e36; // Dark brown wood
|
||||
const tableHeight = 0.7; // Height from floor to top surface
|
||||
const tableWidth = 2.0;
|
||||
const tableDepth = 1.0;
|
||||
const legThickness = 0.05;
|
||||
const shelfThickness = 0.03;
|
||||
// Use standard material for realistic shadowing
|
||||
const material = new THREE.MeshStandardMaterial({ color: woodColor, roughness: 0.8, metalness: 0.1 });
|
||||
|
||||
// VCR gap dimensions calculation
|
||||
const shelfGap = 0.2; // Height of the VCR opening
|
||||
const shelfY = tableHeight - shelfGap - (shelfThickness / 2); // Y position of the bottom shelf
|
||||
|
||||
|
||||
// 2. Table Top
|
||||
const topGeometry = new THREE.BoxGeometry(tableWidth, shelfThickness, tableDepth);
|
||||
const tableTop = new THREE.Mesh(topGeometry, material);
|
||||
tableTop.position.set(0, tableHeight, 0);
|
||||
tableTop.castShadow = true;
|
||||
tableTop.receiveShadow = true;
|
||||
tvGroup.add(tableTop);
|
||||
|
||||
// 3. VCR Shelf (Middle Shelf)
|
||||
const shelfGeometry = new THREE.BoxGeometry(tableWidth, shelfThickness, tableDepth);
|
||||
const vcrShelf = new THREE.Mesh(shelfGeometry, material);
|
||||
vcrShelf.position.set(0, shelfY, 0);
|
||||
vcrShelf.castShadow = true;
|
||||
vcrShelf.receiveShadow = true;
|
||||
tvGroup.add(vcrShelf);
|
||||
|
||||
// 4. Side Walls for VCR Compartment (NEW CODE)
|
||||
const wallHeight = shelfGap; // Height is the gap itself
|
||||
const wallThickness = shelfThickness; // Reuse the shelf thickness for the wall width/depth
|
||||
const wallGeometry = new THREE.BoxGeometry(wallThickness, wallHeight, tableDepth);
|
||||
|
||||
// Calculate the Y center position for the wall
|
||||
const wallYCenter = tableHeight - (shelfThickness / 2) - (wallHeight / 2);
|
||||
|
||||
// Calculate the X position to be flush with the table sides
|
||||
const wallXPosition = (tableWidth / 2) - (wallThickness / 2);
|
||||
|
||||
// Left Wall
|
||||
const sideWallLeft = new THREE.Mesh(wallGeometry, material);
|
||||
sideWallLeft.position.set(-wallXPosition, wallYCenter, 0);
|
||||
sideWallLeft.castShadow = true;
|
||||
sideWallLeft.receiveShadow = true;
|
||||
tvGroup.add(sideWallLeft);
|
||||
|
||||
// Right Wall
|
||||
const sideWallRight = new THREE.Mesh(wallGeometry, material);
|
||||
sideWallRight.position.set(wallXPosition, wallYCenter, 0);
|
||||
sideWallRight.castShadow = true;
|
||||
sideWallRight.receiveShadow = true;
|
||||
tvGroup.add(sideWallRight);
|
||||
|
||||
// 5. Legs
|
||||
const legHeight = shelfY; // Legs go from the floor (y=0) to the shelf (y=shelfY)
|
||||
const legGeometry = new THREE.BoxGeometry(legThickness, legHeight, legThickness);
|
||||
|
||||
// Utility function to create and position a leg
|
||||
const createLeg = (x, z) => {
|
||||
const leg = new THREE.Mesh(legGeometry, material);
|
||||
// Position the leg so the center is at half its height
|
||||
leg.position.set(x, legHeight / 2, z);
|
||||
leg.castShadow = true;
|
||||
leg.receiveShadow = true;
|
||||
return leg;
|
||||
};
|
||||
|
||||
// Calculate offsets for positioning the legs near the corners
|
||||
const offset = (tableWidth / 2) - (legThickness * 2);
|
||||
const depthOffset = (tableDepth / 2) - (legThickness * 2);
|
||||
|
||||
// Front Left
|
||||
tvGroup.add(createLeg(-offset, depthOffset));
|
||||
// Front Right
|
||||
tvGroup.add(createLeg(offset, depthOffset));
|
||||
// Back Left
|
||||
tvGroup.add(createLeg(-offset, -depthOffset));
|
||||
// Back Right
|
||||
tvGroup.add(createLeg(offset, -depthOffset));
|
||||
|
||||
// --- 2. The TV box ---
|
||||
const cabinetGeometry = new THREE.BoxGeometry(1.75, 1.5, 1.0);
|
||||
const cabinet = new THREE.Mesh(cabinetGeometry, tvPlastic);
|
||||
cabinet.position.y = 1.51;
|
||||
cabinet.castShadow = true;
|
||||
cabinet.receiveShadow = true;
|
||||
tvGroup.add(cabinet);
|
||||
|
||||
// --- 3. Screen Frame ---
|
||||
const frameGeometry = new THREE.BoxGeometry(1.5, 1.3, 0.1);
|
||||
const frameMaterial = new THREE.MeshPhongMaterial({ color: 0x111111, shininess: 20 });
|
||||
const frame = new THREE.Mesh(frameGeometry, frameMaterial);
|
||||
frame.position.set(0, 1.5, 0.68);
|
||||
frame.castShadow = true;
|
||||
frame.receiveShadow = true;
|
||||
tvGroup.add(frame);
|
||||
|
||||
// --- 4. Curved Screen (CRT Effect) ---
|
||||
const screenRadius = 3.0; // Radius for the subtle curve
|
||||
const screenWidth = 1.4;
|
||||
const screenHeight = 1.2;
|
||||
const thetaLength = screenWidth / screenRadius; // Calculate angle needed for the arc
|
||||
|
||||
// Use CylinderGeometry as a segment
|
||||
const screenGeometry = new THREE.CylinderGeometry(
|
||||
screenRadius, screenRadius,
|
||||
screenHeight, // Cylinder height is the vertical dimension of the screen
|
||||
32,
|
||||
1,
|
||||
true,
|
||||
(Math.PI / 2) - (thetaLength / 2), // Start angle to center the arc
|
||||
thetaLength // Arc length (width)
|
||||
);
|
||||
|
||||
// Rotate the cylinder segment:
|
||||
// 1. Rotate around X-axis by 90 degrees to lay the height (Y) along Z (depth).
|
||||
//screenGeometry.rotateX(Math.PI / 2);
|
||||
// 2. Rotate around Y-axis by 90 degrees to align the segment's arc across the X-axis (width).
|
||||
screenGeometry.rotateY(-Math.PI/2);
|
||||
|
||||
const screenMaterial = new THREE.MeshBasicMaterial({ color: 0x000000 });
|
||||
tvScreen = new THREE.Mesh(screenGeometry, screenMaterial);
|
||||
|
||||
// Position the curved screen
|
||||
tvScreen.position.set(0.0, 1.5, -2.1);
|
||||
tvScreen.material = new THREE.MeshPhongMaterial({
|
||||
color: 0x0a0a0a, // Deep black
|
||||
shininess: 5,
|
||||
specular: 0x111111
|
||||
});
|
||||
tvScreen.material.needsUpdate = true;
|
||||
tvGroup.add(tvScreen);
|
||||
|
||||
tvGroup.position.set(x, 0, z);
|
||||
tvGroup.rotation.y = rotY;
|
||||
|
||||
// Light from the screen (initially low intensity, will increase when video loads)
|
||||
screenLight = new THREE.PointLight(0xffffff, 0, 10);
|
||||
screenLight.position.set(0, 1.5, 1.0);
|
||||
// Screen light casts shadows
|
||||
screenLight.castShadow = true;
|
||||
screenLight.shadow.mapSize.width = 1024;
|
||||
screenLight.shadow.mapSize.height = 1024;
|
||||
screenLight.shadow.camera.near = 0.2;
|
||||
screenLight.shadow.camera.far = 5;
|
||||
tvGroup.add(screenLight);
|
||||
|
||||
// -- VCR --
|
||||
const vcr = createVcr();
|
||||
vcr.position.set(-0.3, 0.6, 0.05);
|
||||
tvGroup.add(vcr);
|
||||
|
||||
scene.add(tvGroup);
|
||||
}
|
||||
|
||||
// --- Scene Modeling Function ---
|
||||
function createSceneObjects() {
|
||||
// --- Materials (MeshPhongMaterial) ---
|
||||
const darkWood = new THREE.MeshPhongMaterial({ color: 0x3d352e, shininess: 10 });
|
||||
const darkMetal = new THREE.MeshPhongMaterial({
|
||||
color: 0x6b6b6b,
|
||||
shininess: 80,
|
||||
specular: 0x888888
|
||||
});
|
||||
const tvPlastic = new THREE.MeshPhongMaterial({ color: 0x2d251e, shininess: 10 });
|
||||
|
||||
// --- 1. Floor ---
|
||||
const floorGeometry = new THREE.PlaneGeometry(20, 20);
|
||||
const floorTexture = loader.load('./textures/floor.jpg');
|
||||
floorTexture.wrapS = THREE.RepeatWrapping;
|
||||
floorTexture.wrapT = THREE.RepeatWrapping;
|
||||
floorTexture.repeat.set(roomSize, roomSize);
|
||||
const floorMaterial = new THREE.MeshPhongMaterial({ map: floorTexture, color: 0x555555, shininess: 5 });
|
||||
const floor = new THREE.Mesh(floorGeometry, floorMaterial);
|
||||
floor.rotation.x = -Math.PI / 2;
|
||||
floor.position.y = 0;
|
||||
floor.receiveShadow = true;
|
||||
scene.add(floor);
|
||||
|
||||
landingSurfaces.push(floor);
|
||||
|
||||
createTvSet(-roomSize/2 + 1.2, -roomSize/2 + 0.8, Math.PI * 0.1);
|
||||
|
||||
// --- 5. Lamp (On the table, right side) ---
|
||||
const lampBase = new THREE.CylinderGeometry(0.05, 0.2, 0.1, 12);
|
||||
const lampPole = new THREE.CylinderGeometry(0.02, 0.02, 1.5, 8);
|
||||
const lampShade = new THREE.ConeGeometry(0.2, 0.4, 16);
|
||||
|
||||
const baseMesh = new THREE.Mesh(lampBase, darkMetal);
|
||||
const poleMesh = new THREE.Mesh(lampPole, darkMetal);
|
||||
const shadeMesh = new THREE.Mesh(lampShade, darkMetal);
|
||||
|
||||
// Ensure lamp parts cast shadows
|
||||
baseMesh.castShadow = true; baseMesh.receiveShadow = true;
|
||||
poleMesh.castShadow = true; poleMesh.receiveShadow = true;
|
||||
//shadeMesh.castShadow = true; shadeMesh.receiveShadow = true;
|
||||
|
||||
baseMesh.position.y = -0.6;
|
||||
poleMesh.position.y = 0.0;
|
||||
shadeMesh.position.y = 0.8 + 0.1;
|
||||
shadeMesh.rotation.x = Math.PI;
|
||||
|
||||
// Lamp Light (Warm Glow) - Configured to cast shadows
|
||||
lampLightPoint = new THREE.PointLight(0xffaa00, originalLampIntensity, 4);
|
||||
lampLightPoint.position.set(-0.01, roomHeight-0.9, 0.01);
|
||||
lampLightPoint.castShadow = true;
|
||||
// Optimization: Reduced map size and far plane to ease resource burden
|
||||
lampLightPoint.shadow.mapSize.width = 512;
|
||||
lampLightPoint.shadow.mapSize.height = 512;
|
||||
lampLightPoint.shadow.camera.near = 0.1;
|
||||
lampLightPoint.shadow.camera.far = 4; // Matches the light's attenuation distance (4)
|
||||
lampLightPoint.penumbra = 0.5;
|
||||
|
||||
lampLightSpot = new THREE.SpotLight(0xffaa00, originalLampIntensity, 4);
|
||||
lampLightSpot.position.set(-0.01, 1.0, 0.01);
|
||||
lampLightSpot.target.position.set(0, 5, 0);
|
||||
lampLightSpot.castShadow = true;
|
||||
// Optimization: Reduced map size and far plane to ease resource burden
|
||||
lampLightSpot.shadow.mapSize.width = 512;
|
||||
lampLightSpot.shadow.mapSize.height = 512;
|
||||
lampLightSpot.shadow.camera.near = 0.1;
|
||||
lampLightSpot.shadow.camera.far = 4; // Matches the light's attenuation distance (4)
|
||||
lampLightSpot.penumbra = 0.5;
|
||||
|
||||
const lampGroup = new THREE.Group();
|
||||
lampGroup.add(baseMesh, poleMesh, shadeMesh, lampLightSpot, lampLightSpot.target, lampLightPoint);
|
||||
lampGroup.position.set(0.8, 0.7, -roomSize/2+0.5);
|
||||
|
||||
scene.add(lampGroup);
|
||||
|
||||
landingSurfaces.push(shadeMesh);
|
||||
|
||||
// --- 7. Old Camera (On the table) ---
|
||||
const cameraBody = new THREE.BoxGeometry(0.4, 0.3, 0.15);
|
||||
const cameraLens = new THREE.CylinderGeometry(0.08, 0.08, 0.05, 12);
|
||||
const cameraMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x333333,
|
||||
shininess: 50,
|
||||
specular: 0x444444
|
||||
});
|
||||
|
||||
const cameraMesh = new THREE.Mesh(cameraBody, cameraMaterial);
|
||||
const lensMesh = new THREE.Mesh(cameraLens, cameraMaterial);
|
||||
lensMesh.position.z = 0.15;
|
||||
lensMesh.rotation.x = Math.PI/2;
|
||||
|
||||
cameraMesh.add(lensMesh);
|
||||
cameraMesh.position.set(-1.7, 0.15, 0.4);
|
||||
cameraMesh.rotation.y = -Math.PI / 10;
|
||||
cameraMesh.castShadow = true; cameraMesh.receiveShadow = true;
|
||||
scene.add(cameraMesh);
|
||||
|
||||
// --- 8. Pizza Box ---
|
||||
const boxGeometry = new THREE.BoxGeometry(0.5, 0.05, 0.5);
|
||||
const boxMaterial = new THREE.MeshPhongMaterial({ color: 0xe0c896, shininess: 5 });
|
||||
const pizzaBox = new THREE.Mesh(boxGeometry, boxMaterial);
|
||||
pizzaBox.position.set(-1.8, 0.025, -0.8);
|
||||
pizzaBox.rotation.y = Math.PI / 5;
|
||||
pizzaBox.castShadow = true; pizzaBox.receiveShadow = true;
|
||||
scene.add(pizzaBox);
|
||||
|
||||
// --- 8. Cassette ---
|
||||
const cassetteGeometry = new THREE.BoxGeometry(0.2, 0.05, 0.45);
|
||||
const cassetteMaterial = new THREE.MeshPhongMaterial({ color: 0xe0c896, shininess: 5 });
|
||||
const cassette = new THREE.Mesh(cassetteGeometry, cassetteMaterial);
|
||||
cassette.position.set(-0.5, 0.025, -1.4);
|
||||
cassette.rotation.y = Math.PI / 3;
|
||||
cassette.castShadow = true; cassette.receiveShadow = true;
|
||||
scene.add(cassette);
|
||||
|
||||
createDoor(roomSize/2, -roomSize/2 * 0.5, -Math.PI/2);
|
||||
createBookshelf(-roomSize/2 + 0.2, roomSize/2*0.2, Math.PI/2, 0);
|
||||
createBookshelf(-roomSize/2 + 0.2, roomSize/2*0.7, Math.PI/2, 0);
|
||||
createBookshelf(roomSize/2 * 0.7, -roomSize/2+0.3, 0, 1);
|
||||
|
||||
setupFlies();
|
||||
}
|
||||
|
||||
// --- Dust Particle System Function ---
|
||||
function createDust() {
|
||||
const particleCount = 2000;
|
||||
const particlesGeometry = new THREE.BufferGeometry();
|
||||
const positions = [];
|
||||
|
||||
for (let i = 0; i < particleCount; i++) {
|
||||
positions.push(
|
||||
(Math.random() - 0.5) * 15,
|
||||
Math.random() * 10,
|
||||
(Math.random() - 0.5) * 15
|
||||
);
|
||||
}
|
||||
// Use THREE.Float32BufferAttribute to correctly set the position attribute
|
||||
particlesGeometry.setAttribute('position', new THREE.Float32BufferAttribute(positions, 3));
|
||||
|
||||
const particleMaterial = new THREE.PointsMaterial({
|
||||
color: 0xffffff,
|
||||
size: 0.015,
|
||||
transparent: true,
|
||||
opacity: 0.08,
|
||||
blending: THREE.AdditiveBlending
|
||||
});
|
||||
|
||||
dust = new THREE.Points(particlesGeometry, particleMaterial);
|
||||
// Dust particles generally don't cast or receive shadows in this context
|
||||
scene.add(dust);
|
||||
}
|
||||
|
||||
// --- Helper function to format seconds into MM:SS ---
|
||||
function formatTime(seconds) {
|
||||
if (isNaN(seconds) || seconds === Infinity || seconds < 0) return '--:--';
|
||||
@ -721,453 +250,6 @@
|
||||
setTimeout(() => { playVideoByIndex(0); }, startDelay * 1000);
|
||||
}
|
||||
|
||||
let vcrDisplayLight;
|
||||
let simulatedPlaybackTime = 0;
|
||||
let lastUpdateTime = -1;
|
||||
let baseTime = 0;
|
||||
let blinkState = false; // For blinking colon
|
||||
let lastBlinkToggleTime = 0;
|
||||
|
||||
// --- Segment Display Definitions ---
|
||||
|
||||
// Define which segments (indexed 0-6: A, B, C, D, E, F, G) are active for each digit
|
||||
// A=Top, B=TR, C=BR, D=Bottom, E=BL, F=TL, G=Middle
|
||||
const SEGMENTS = {
|
||||
'0': [1, 1, 1, 1, 1, 1, 0],
|
||||
'1': [0, 1, 1, 0, 0, 0, 0],
|
||||
'2': [1, 1, 0, 1, 1, 0, 1],
|
||||
'3': [1, 1, 1, 1, 0, 0, 1],
|
||||
'4': [0, 1, 1, 0, 0, 1, 1],
|
||||
'5': [1, 0, 1, 1, 0, 1, 1],
|
||||
'6': [1, 0, 1, 1, 1, 1, 1],
|
||||
'7': [1, 1, 1, 0, 0, 0, 0],
|
||||
'8': [1, 1, 1, 1, 1, 1, 1],
|
||||
'9': [1, 1, 1, 1, 0, 1, 1],
|
||||
' ': [0, 0, 0, 0, 0, 0, 0]
|
||||
};
|
||||
|
||||
const SEG_THICKNESS = 3; // Thickness of the segment line in canvas pixels
|
||||
const SEG_PADDING = 2; // Padding within a digit segment's box
|
||||
|
||||
// Colors for active and inactive segments
|
||||
const COLOR_ACTIVE = '#00ff44'; // Bright Fluorescent Green
|
||||
const COLOR_INACTIVE = '#1a1a1a'; // Dim dark gray for 'ghost' segments
|
||||
|
||||
/**
|
||||
* Draws a single 7-segment digit by drawing active segments.
|
||||
* Now includes drawing of inactive (ghost) segments for better readability.
|
||||
* @param {CanvasRenderingContext2D} ctx
|
||||
* @param {string} digit The digit character (0-9).
|
||||
* @param {number} x Left position of the digit area.
|
||||
* @param {number} y Top position of the digit area.
|
||||
* @param {number} H Total height of the digit area.
|
||||
*/
|
||||
function drawSegmentDigit(ctx, digit, x, y, H) {
|
||||
const segments = SEGMENTS[digit] || SEGMENTS[' '];
|
||||
const W = H / 2; // Width is half the height for standard aspect ratio
|
||||
|
||||
// Segment dimensions relative to W and H
|
||||
const hLength = W - 2 * SEG_PADDING;
|
||||
// Vertical length calculation: (Total height - 2 paddings - 3 horizontal thicknesses) / 2
|
||||
const vLength = (H - (2 * SEG_PADDING) - (3 * SEG_THICKNESS)) / 2;
|
||||
|
||||
// Helper to draw horizontal segment (A, G, D)
|
||||
const drawH = (index, x_start, y_start) => {
|
||||
ctx.fillStyle = segments[index] ? COLOR_ACTIVE : COLOR_INACTIVE;
|
||||
ctx.fillRect(x_start + SEG_PADDING, y_start, hLength, SEG_THICKNESS);
|
||||
};
|
||||
|
||||
// Helper to draw vertical segment (F, B, E, C)
|
||||
const drawV = (index, x_start, y_start) => {
|
||||
ctx.fillStyle = segments[index] ? COLOR_ACTIVE : COLOR_INACTIVE;
|
||||
ctx.fillRect(x_start, y_start, SEG_THICKNESS, vLength);
|
||||
};
|
||||
|
||||
// Define segment positions
|
||||
|
||||
// Horizontal segments
|
||||
// A (Top) - index 0
|
||||
drawH(0, x, y + SEG_PADDING);
|
||||
// G (Middle) - index 6
|
||||
drawH(6, x, y + H/2 - SEG_THICKNESS/2);
|
||||
// D (Bottom) - index 3
|
||||
drawH(3, x, y + H - SEG_PADDING - SEG_THICKNESS);
|
||||
|
||||
// Vertical segments (Top Half)
|
||||
const topVStart = y + SEG_PADDING + SEG_THICKNESS;
|
||||
const rightVStart = x + W - SEG_PADDING - SEG_THICKNESS;
|
||||
|
||||
// F (Top-Left) - index 5
|
||||
drawV(5, x + SEG_PADDING, topVStart);
|
||||
|
||||
// B (Top-Right) - index 1
|
||||
drawV(1, rightVStart, topVStart);
|
||||
|
||||
// Vertical segments (Bottom Half)
|
||||
const bottomVStart = y + H/2 + SEG_THICKNESS/2;
|
||||
|
||||
// E (Bottom-Left) - index 4
|
||||
drawV(4, x + SEG_PADDING, bottomVStart);
|
||||
|
||||
// C (Bottom-Right) - index 2
|
||||
drawV(2, rightVStart, bottomVStart);
|
||||
}
|
||||
|
||||
// Function to draw the colon (two dots), now with blinking logic
|
||||
function drawColon(ctx, x, y, H, isVisible) {
|
||||
const dotSize = 4;
|
||||
ctx.fillStyle = COLOR_ACTIVE;
|
||||
|
||||
if (isVisible) {
|
||||
// Top dot
|
||||
ctx.fillRect(x, y + H * 0.3 - dotSize / 2, dotSize, dotSize);
|
||||
// Bottom dot
|
||||
ctx.fillRect(x, y + H * 0.7 - dotSize / 2, dotSize, dotSize);
|
||||
} else {
|
||||
// Draw inactive colon if not visible, for consistency
|
||||
ctx.fillStyle = COLOR_INACTIVE;
|
||||
ctx.fillRect(x, y + H * 0.3 - dotSize / 2, dotSize, dotSize);
|
||||
ctx.fillRect(x, y + H * 0.7 - dotSize / 2, dotSize, dotSize);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Draws a simple playback arrow (triangle)
|
||||
* @param {CanvasRenderingContext2D} ctx
|
||||
* @param {number} x Left position of the arrow area.
|
||||
* @param {number} y Top position of the arrow area.
|
||||
* @param {number} H Total height of the arrow area.
|
||||
*/
|
||||
function drawPlaybackArrow(ctx, x, y, H) {
|
||||
const arrowWidth = H * 0.4; // Arrow width relative to digit height
|
||||
const arrowHeight = H * 0.4; // Arrow height relative to digit height
|
||||
|
||||
ctx.fillStyle = COLOR_ACTIVE;
|
||||
ctx.beginPath();
|
||||
ctx.moveTo(x, y + H * 0.5 - arrowHeight / 2); // Top point
|
||||
ctx.lineTo(x + arrowWidth, y + H * 0.5); // Right point (center)
|
||||
ctx.lineTo(x, y + H * 0.5 + arrowHeight / 2); // Bottom point
|
||||
ctx.closePath();
|
||||
ctx.fill();
|
||||
}
|
||||
|
||||
|
||||
// Main function to render the entire time string using segments
|
||||
function drawSegmentDisplay(ctx, timeString) {
|
||||
const canvasWidth = ctx.canvas.width;
|
||||
const canvasHeight = ctx.canvas.height;
|
||||
const timeStringLength = timeString.length;
|
||||
|
||||
// Clear display to dark background
|
||||
ctx.fillStyle = '#0a0a0a';
|
||||
ctx.fillRect(0, 0, canvasWidth, canvasHeight);
|
||||
|
||||
// Constants for layout
|
||||
const charSpacing = 8; // Spacing between digits
|
||||
const digitHeight = canvasHeight - 2 * SEG_PADDING;
|
||||
const digitWidth = digitHeight / 2 + SEG_PADDING; // Total width slot for one digit
|
||||
const colonWidth = 6;
|
||||
const arrowWidth = digitHeight * 0.7; // Approx width for the arrow
|
||||
const arrowPadding = 10; // Space between arrow and first digit
|
||||
|
||||
// Calculate total display width including arrow and spaces
|
||||
const totalDisplayWidth = arrowWidth + arrowPadding + (4 * digitWidth) + colonWidth + ((timeStringLength - 1) * charSpacing);
|
||||
|
||||
// Calculate starting X to center the display
|
||||
let currentX = (canvasWidth - totalDisplayWidth) / 2;
|
||||
const currentY = SEG_PADDING;
|
||||
|
||||
// Draw Playback Arrow
|
||||
if (isVideoLoaded && videoElement.readyState >= 3) {
|
||||
drawPlaybackArrow(ctx, currentX, currentY, digitHeight);
|
||||
}
|
||||
currentX += arrowWidth + arrowPadding; // Move X after arrow and its padding
|
||||
|
||||
for (let i = 0; i < timeStringLength; i++) {
|
||||
const char = timeString[i];
|
||||
|
||||
if (char === ':') {
|
||||
drawColon(ctx, currentX, currentY, digitHeight, blinkState); // Pass blinkState
|
||||
currentX += colonWidth;
|
||||
} else if (char >= '0' && char <= '9') {
|
||||
drawSegmentDigit(ctx, char, currentX, currentY, digitHeight);
|
||||
currentX += digitWidth;
|
||||
}
|
||||
|
||||
// Add spacing only if it's not the last element
|
||||
if (i < timeStringLength - 1) {
|
||||
currentX += charSpacing;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- VCR Display Functions ---
|
||||
function createVcrDisplay() {
|
||||
const canvas = document.createElement('canvas');
|
||||
canvas.width = 160; // Increased width for arrow and better spacing
|
||||
canvas.height = 32;
|
||||
const ctx = canvas.getContext('2d');
|
||||
|
||||
ctx.fillStyle = '#0a0a0a';
|
||||
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
||||
|
||||
vcrDisplayTexture = new THREE.CanvasTexture(canvas);
|
||||
vcrDisplayTexture.needsUpdate = true;
|
||||
|
||||
const displayGeometry = new THREE.PlaneGeometry(0.45, 0.1); // Adjust geometry width for new canvas size
|
||||
const displayMaterial = new THREE.MeshBasicMaterial({
|
||||
map: vcrDisplayTexture,
|
||||
side: THREE.FrontSide,
|
||||
color: 0xffffff,
|
||||
transparent: true,
|
||||
emissive: 0x00ff44,
|
||||
emissiveIntensity: 0.1
|
||||
});
|
||||
|
||||
const displayMesh = new THREE.Mesh(displayGeometry, displayMaterial);
|
||||
return displayMesh;
|
||||
}
|
||||
|
||||
function updateVcrDisplay(time) {
|
||||
if (!vcrDisplayTexture) return;
|
||||
|
||||
const canvas = vcrDisplayTexture.image;
|
||||
const ctx = canvas.getContext('2d');
|
||||
|
||||
const timeString = formatTime(time);
|
||||
|
||||
// Uses the new segment drawing function with ghosting, including blinkState for colon
|
||||
drawSegmentDisplay(ctx, timeString);
|
||||
|
||||
vcrDisplayTexture.needsUpdate = true;
|
||||
}
|
||||
|
||||
// --- VCR Model Function ---
|
||||
function createVcr() {
|
||||
// Materials
|
||||
const vcrBodyMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x222222, // Dark metallic gray
|
||||
shininess: 70,
|
||||
specular: 0x444444
|
||||
});
|
||||
const slotMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x0a0a0a, // Deep black
|
||||
shininess: 5,
|
||||
specular: 0x111111
|
||||
});
|
||||
const floorMaterial = new THREE.MeshPhongMaterial({ color: 0x1a1a1a, shininess: 5 });
|
||||
|
||||
// VCR Body
|
||||
const vcrBodyGeometry = new THREE.BoxGeometry(1.0, 0.2, 0.7);
|
||||
const vcrBody = new THREE.Mesh(vcrBodyGeometry, vcrBodyMaterial);
|
||||
vcrBody.position.y = 0; // Centered
|
||||
vcrBody.castShadow = true;
|
||||
vcrBody.receiveShadow = true;
|
||||
|
||||
// Cassette Slot / Front Face
|
||||
const slotGeometry = new THREE.BoxGeometry(0.9, 0.05, 0.01);
|
||||
const slotMesh = new THREE.Mesh(slotGeometry, slotMaterial);
|
||||
slotMesh.position.set(0, -0.05, 0.35 + 0.005);
|
||||
slotMesh.castShadow = true;
|
||||
slotMesh.receiveShadow = true;
|
||||
|
||||
// VCR Display
|
||||
const displayMesh = createVcrDisplay();
|
||||
displayMesh.position.z = 0.35 + 0.005;
|
||||
displayMesh.position.x = 0.2; // Adjusted X for arrow
|
||||
displayMesh.position.y = 0.03;
|
||||
|
||||
// VCR Group
|
||||
const vcrGroup = new THREE.Group();
|
||||
vcrGroup.add(vcrBody, slotMesh, displayMesh);
|
||||
vcrGroup.position.set(0, 0.1, 0); // Position the whole VCR slightly above the floor
|
||||
|
||||
// Light from the VCR display itself
|
||||
vcrDisplayLight = new THREE.PointLight(0x00ff44, 0.5, 1);
|
||||
vcrDisplayLight.position.set(0.3, 0.03, 0.35 + 0.05); // Move light slightly closer to VCR surface
|
||||
vcrDisplayLight.castShadow = true;
|
||||
vcrDisplayLight.shadow.mapSize.width = 256;
|
||||
vcrDisplayLight.shadow.mapSize.height = 256;
|
||||
vcrGroup.add(vcrDisplayLight);
|
||||
|
||||
return vcrGroup;
|
||||
}
|
||||
|
||||
function randomFlyTarget() {
|
||||
return new THREE.Vector3(
|
||||
(Math.random() - 0.5) * (ROOM_SIZE - 1),
|
||||
FLIGHT_HEIGHT_MIN + Math.random() * (FLIGHT_HEIGHT_MAX - FLIGHT_HEIGHT_MIN),
|
||||
(Math.random() - 0.5) * (ROOM_SIZE - 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a single fly mesh (small cone/tetrahedron).
|
||||
* @returns {THREE.Group}
|
||||
*/
|
||||
function createFlyMesh() {
|
||||
const flyGroup = new THREE.Group();
|
||||
|
||||
const flyMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x111111, // Dark fly color
|
||||
shininess: 50,
|
||||
});
|
||||
|
||||
// Small Cone/Tetrahedron for a simple shape
|
||||
const bodyGeometry = new THREE.ConeGeometry(0.01, 0.02, 3);
|
||||
const body = new THREE.Mesh(bodyGeometry, flyMaterial);
|
||||
body.rotation.x = degToRad(90); // Point nose in Z direction
|
||||
|
||||
body.castShadow = true;
|
||||
body.receiveShadow = true;
|
||||
flyGroup.add(body);
|
||||
|
||||
// Initial state and parameters for the fly
|
||||
flyGroup.userData = {
|
||||
state: 'flying', // 'flying' or 'landed'
|
||||
landTimer: 0,
|
||||
t: 0, // Curve progression t parameter (0 to 1)
|
||||
speed: FLY_FLIGHT_SPEED_FACTOR + Math.random() * 0.01,
|
||||
curve: null,
|
||||
landCheckTimer: 0,
|
||||
oscillationTime: Math.random() * 100, // For smooth y-axis buzzing
|
||||
};
|
||||
|
||||
// Initial random position
|
||||
flyGroup.position = randomFlyTarget();
|
||||
|
||||
return flyGroup;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Creates a new Quadratic Bezier curve for a fly's flight path.
|
||||
* @param {THREE.Group} fly - The fly mesh group.
|
||||
* @param {THREE.Vector3} endPoint - The target position for the end of the curve.
|
||||
*/
|
||||
function createFlyCurve(fly, endPoint) {
|
||||
const startPoint = fly.position.clone();
|
||||
|
||||
// Calculate the midpoint
|
||||
const midPoint = new THREE.Vector3().lerpVectors(startPoint, endPoint, 0.5);
|
||||
|
||||
// Calculate a random offset for the control point to create curvature
|
||||
const offsetMagnitude = startPoint.distanceTo(endPoint) * 0.5;
|
||||
const offsetAngle = Math.random() * Math.PI * 2;
|
||||
|
||||
// Displace the control point randomly to create a swooping path.
|
||||
// Control point y is usually higher than start/end for a nice arc.
|
||||
const controlPoint = new THREE.Vector3(
|
||||
midPoint.x + Math.cos(offsetAngle) * offsetMagnitude * 0.5,
|
||||
midPoint.y + Math.random() * 0.5 + 0.5,
|
||||
midPoint.z + Math.sin(offsetAngle) * offsetMagnitude * 0.5
|
||||
);
|
||||
|
||||
fly.userData.curve = new THREE.QuadraticBezierCurve3(
|
||||
startPoint,
|
||||
controlPoint,
|
||||
endPoint
|
||||
);
|
||||
fly.userData.t = 0; // Reset progression
|
||||
fly.userData.landCheckTimer = 50 + Math.random() * 50; // New landing decision window
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates and places the 'flies' meshes.
|
||||
*/
|
||||
function setupFlies() {
|
||||
for (let i = 0; i < FLIES_COUNT; i++) {
|
||||
const fly = createFlyMesh();
|
||||
scene.add(fly);
|
||||
flies.push(fly);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Updates the position and state of the flies using Bezier curves.
|
||||
*/
|
||||
function updateFlies() {
|
||||
flies.forEach(fly => {
|
||||
const data = fly.userData;
|
||||
|
||||
if (data.state === 'flying' || data.state === 'landing') {
|
||||
|
||||
if (!data.curve) {
|
||||
// Initialize the first curve
|
||||
const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0;
|
||||
}
|
||||
|
||||
// Advance curve progression
|
||||
data.t += data.speed;
|
||||
|
||||
// Check for landing readiness during the flight path
|
||||
data.landCheckTimer--;
|
||||
|
||||
if (data.t >= 1) {
|
||||
// Path finished
|
||||
|
||||
if (data.state === 'landing') {
|
||||
data.state = 'landed';
|
||||
data.landTimer = FLY_WAIT_BASE + Math.random() * 1000; // Land for a random duration
|
||||
data.t = 0;
|
||||
return; // Stop updates for this fly
|
||||
}
|
||||
|
||||
// 1. Check for landing decision
|
||||
if (data.landCheckTimer <= 0 && Math.random() > FLY_LAND_CHANCE) {
|
||||
|
||||
// Raycast down from the current position to find a landing spot
|
||||
raycaster.set(fly.position, new THREE.Vector3(0, -1, 0));
|
||||
const intersects = raycaster.intersectObjects(landingSurfaces, false);
|
||||
|
||||
if (intersects.length > 0) {
|
||||
const intersect = intersects[0];
|
||||
data.state = 'landing';
|
||||
// Land slightly above the surface
|
||||
let newTargetPos = new THREE.Vector3(intersect.point.x,
|
||||
intersect.point.y + 0.05,
|
||||
intersect.point.z);
|
||||
// const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (data.state !== 'landing') {
|
||||
// 2. If not landing, generate a new random flight path
|
||||
const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0; // Reset T for the new curve
|
||||
}
|
||||
}
|
||||
|
||||
// Set position along the curve
|
||||
fly.position.copy(data.curve.getPoint(Math.min(data.t, 1)));
|
||||
|
||||
// Set rotation tangent to the curve
|
||||
const tangent = data.curve.getTangent(Math.min(data.t, 1)).normalize();
|
||||
fly.rotation.y = Math.atan2(tangent.x, tangent.z);
|
||||
|
||||
// Add slight Y oscillation for buzzing feel (on top of curve)
|
||||
data.oscillationTime += 0.1;
|
||||
fly.position.y += Math.sin(data.oscillationTime * 4) * 0.01;
|
||||
|
||||
} else if (data.state === 'landed') {
|
||||
// --- Landed State ---
|
||||
data.landTimer--;
|
||||
if (data.landTimer <= 0) {
|
||||
// Take off: Generate new flight curve from current landed position
|
||||
data.state = 'flying';
|
||||
|
||||
const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// --- Animation Loop ---
|
||||
function animate() {
|
||||
requestAnimationFrame(animate);
|
||||
|
||||
28
tv-player/src/effects_dust.js
Normal file
28
tv-player/src/effects_dust.js
Normal file
@ -0,0 +1,28 @@
|
||||
// --- Dust Particle System Function ---
|
||||
function createDust() {
|
||||
const particleCount = 2000;
|
||||
const particlesGeometry = new THREE.BufferGeometry();
|
||||
const positions = [];
|
||||
|
||||
for (let i = 0; i < particleCount; i++) {
|
||||
positions.push(
|
||||
(Math.random() - 0.5) * 15,
|
||||
Math.random() * 10,
|
||||
(Math.random() - 0.5) * 15
|
||||
);
|
||||
}
|
||||
// Use THREE.Float32BufferAttribute to correctly set the position attribute
|
||||
particlesGeometry.setAttribute('position', new THREE.Float32BufferAttribute(positions, 3));
|
||||
|
||||
const particleMaterial = new THREE.PointsMaterial({
|
||||
color: 0xffffff,
|
||||
size: 0.015,
|
||||
transparent: true,
|
||||
opacity: 0.08,
|
||||
blending: THREE.AdditiveBlending
|
||||
});
|
||||
|
||||
dust = new THREE.Points(particlesGeometry, particleMaterial);
|
||||
// Dust particles generally don't cast or receive shadows in this context
|
||||
scene.add(dust);
|
||||
}
|
||||
174
tv-player/src/effects_flies.js
Normal file
174
tv-player/src/effects_flies.js
Normal file
@ -0,0 +1,174 @@
|
||||
function randomFlyTarget() {
|
||||
return new THREE.Vector3(
|
||||
(Math.random() - 0.5) * (ROOM_SIZE - 1),
|
||||
FLIGHT_HEIGHT_MIN + Math.random() * (FLIGHT_HEIGHT_MAX - FLIGHT_HEIGHT_MIN),
|
||||
(Math.random() - 0.5) * (ROOM_SIZE - 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a single fly mesh (small cone/tetrahedron).
|
||||
* @returns {THREE.Group}
|
||||
*/
|
||||
function createFlyMesh() {
|
||||
const flyGroup = new THREE.Group();
|
||||
|
||||
const flyMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x111111, // Dark fly color
|
||||
shininess: 50,
|
||||
});
|
||||
|
||||
// Small Cone/Tetrahedron for a simple shape
|
||||
const bodyGeometry = new THREE.ConeGeometry(0.01, 0.02, 3);
|
||||
const body = new THREE.Mesh(bodyGeometry, flyMaterial);
|
||||
body.rotation.x = degToRad(90); // Point nose in Z direction
|
||||
|
||||
body.castShadow = true;
|
||||
body.receiveShadow = true;
|
||||
flyGroup.add(body);
|
||||
|
||||
// Initial state and parameters for the fly
|
||||
flyGroup.userData = {
|
||||
state: 'flying', // 'flying' or 'landed'
|
||||
landTimer: 0,
|
||||
t: 0, // Curve progression t parameter (0 to 1)
|
||||
speed: FLY_FLIGHT_SPEED_FACTOR + Math.random() * 0.01,
|
||||
curve: null,
|
||||
landCheckTimer: 0,
|
||||
oscillationTime: Math.random() * 100, // For smooth y-axis buzzing
|
||||
};
|
||||
|
||||
// Initial random position
|
||||
flyGroup.position = randomFlyTarget();
|
||||
|
||||
return flyGroup;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Creates a new Quadratic Bezier curve for a fly's flight path.
|
||||
* @param {THREE.Group} fly - The fly mesh group.
|
||||
* @param {THREE.Vector3} endPoint - The target position for the end of the curve.
|
||||
*/
|
||||
function createFlyCurve(fly, endPoint) {
|
||||
const startPoint = fly.position.clone();
|
||||
|
||||
// Calculate the midpoint
|
||||
const midPoint = new THREE.Vector3().lerpVectors(startPoint, endPoint, 0.5);
|
||||
|
||||
// Calculate a random offset for the control point to create curvature
|
||||
const offsetMagnitude = startPoint.distanceTo(endPoint) * 0.5;
|
||||
const offsetAngle = Math.random() * Math.PI * 2;
|
||||
|
||||
// Displace the control point randomly to create a swooping path.
|
||||
// Control point y is usually higher than start/end for a nice arc.
|
||||
const controlPoint = new THREE.Vector3(
|
||||
midPoint.x + Math.cos(offsetAngle) * offsetMagnitude * 0.5,
|
||||
midPoint.y + Math.random() * 0.5 + 0.5,
|
||||
midPoint.z + Math.sin(offsetAngle) * offsetMagnitude * 0.5
|
||||
);
|
||||
|
||||
fly.userData.curve = new THREE.QuadraticBezierCurve3(
|
||||
startPoint,
|
||||
controlPoint,
|
||||
endPoint
|
||||
);
|
||||
fly.userData.t = 0; // Reset progression
|
||||
fly.userData.landCheckTimer = 50 + Math.random() * 50; // New landing decision window
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates and places the 'flies' meshes.
|
||||
*/
|
||||
function setupFlies() {
|
||||
for (let i = 0; i < FLIES_COUNT; i++) {
|
||||
const fly = createFlyMesh();
|
||||
scene.add(fly);
|
||||
flies.push(fly);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Updates the position and state of the flies using Bezier curves.
|
||||
*/
|
||||
function updateFlies() {
|
||||
flies.forEach(fly => {
|
||||
const data = fly.userData;
|
||||
|
||||
if (data.state === 'flying' || data.state === 'landing') {
|
||||
|
||||
if (!data.curve) {
|
||||
// Initialize the first curve
|
||||
const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0;
|
||||
}
|
||||
|
||||
// Advance curve progression
|
||||
data.t += data.speed;
|
||||
|
||||
// Check for landing readiness during the flight path
|
||||
data.landCheckTimer--;
|
||||
|
||||
if (data.t >= 1) {
|
||||
// Path finished
|
||||
|
||||
if (data.state === 'landing') {
|
||||
data.state = 'landed';
|
||||
data.landTimer = FLY_WAIT_BASE + Math.random() * 1000; // Land for a random duration
|
||||
data.t = 0;
|
||||
return; // Stop updates for this fly
|
||||
}
|
||||
|
||||
// 1. Check for landing decision
|
||||
if (data.landCheckTimer <= 0 && Math.random() > FLY_LAND_CHANCE) {
|
||||
|
||||
// Raycast down from the current position to find a landing spot
|
||||
raycaster.set(fly.position, new THREE.Vector3(0, -1, 0));
|
||||
const intersects = raycaster.intersectObjects(landingSurfaces, false);
|
||||
|
||||
if (intersects.length > 0) {
|
||||
const intersect = intersects[0];
|
||||
data.state = 'landing';
|
||||
// Land slightly above the surface
|
||||
let newTargetPos = new THREE.Vector3(intersect.point.x,
|
||||
intersect.point.y + 0.05,
|
||||
intersect.point.z);
|
||||
// const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (data.state !== 'landing') {
|
||||
// 2. If not landing, generate a new random flight path
|
||||
const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0; // Reset T for the new curve
|
||||
}
|
||||
}
|
||||
|
||||
// Set position along the curve
|
||||
fly.position.copy(data.curve.getPoint(Math.min(data.t, 1)));
|
||||
|
||||
// Set rotation tangent to the curve
|
||||
const tangent = data.curve.getTangent(Math.min(data.t, 1)).normalize();
|
||||
fly.rotation.y = Math.atan2(tangent.x, tangent.z);
|
||||
|
||||
// Add slight Y oscillation for buzzing feel (on top of curve)
|
||||
data.oscillationTime += 0.1;
|
||||
fly.position.y += Math.sin(data.oscillationTime * 4) * 0.01;
|
||||
|
||||
} else if (data.state === 'landed') {
|
||||
// --- Landed State ---
|
||||
data.landTimer--;
|
||||
if (data.landTimer <= 0) {
|
||||
// Take off: Generate new flight curve from current landed position
|
||||
data.state = 'flying';
|
||||
|
||||
const newTargetPos = randomFlyTarget();
|
||||
createFlyCurve(fly, newTargetPos);
|
||||
data.t = 0;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
@ -1,5 +1,10 @@
|
||||
// --- Global Variables ---
|
||||
let scene, camera, renderer, tvScreen, videoTexture, dust, screenLight, lampLightPoint, lampLightSpot;
|
||||
|
||||
// VCR Display related variables
|
||||
let simulatedPlaybackTime = 0;
|
||||
let lastUpdateTime = -1;
|
||||
let baseTime = 0;
|
||||
let isVideoLoaded = false;
|
||||
let videoUrls = []; // Array to hold all video URLs
|
||||
let currentVideoIndex = -1; // Index of the currently playing video
|
||||
|
||||
@ -74,3 +74,498 @@ function createRoomWalls() {
|
||||
windowPane.position.set(-3.5, roomHeight * 0.5 + 1.5, windowZ);
|
||||
scene.add(windowPane);
|
||||
}
|
||||
|
||||
function createBookshelf(x, z, rotationY, uniqueSeed) {
|
||||
seed = uniqueSeed; // Reset seed for this specific shelf instance
|
||||
|
||||
const shelfHeight = 2.2;
|
||||
const shelfDepth = 0.35;
|
||||
const shelfWidth = 1.2;
|
||||
const numShelves = 6;
|
||||
const woodThickness = 0.04;
|
||||
const woodColor = 0x5c4033; // Darker, richer wood
|
||||
|
||||
const shelfGroup = new THREE.Group();
|
||||
shelfGroup.position.set(x, 0, z);
|
||||
shelfGroup.rotation.y = rotationY;
|
||||
|
||||
const woodMaterial = new THREE.MeshPhongMaterial({ color: woodColor, shininess: 30 });
|
||||
|
||||
// 1. Build Frame (Hollow box)
|
||||
// Back Panel
|
||||
const backGeo = new THREE.BoxGeometry(shelfWidth, shelfHeight, woodThickness);
|
||||
const backPanel = new THREE.Mesh(backGeo, woodMaterial);
|
||||
backPanel.position.set(0, shelfHeight / 2, -shelfDepth / 2 + woodThickness / 2);
|
||||
backPanel.castShadow = true;
|
||||
backPanel.receiveShadow = true;
|
||||
shelfGroup.add(backPanel);
|
||||
|
||||
// Side Panels (Left & Right)
|
||||
const sideGeo = new THREE.BoxGeometry(woodThickness, shelfHeight, shelfDepth);
|
||||
const leftSide = new THREE.Mesh(sideGeo, woodMaterial);
|
||||
leftSide.position.set(-shelfWidth / 2 + woodThickness / 2, shelfHeight / 2, 0);
|
||||
leftSide.castShadow = true;
|
||||
leftSide.receiveShadow = true;
|
||||
shelfGroup.add(leftSide);
|
||||
|
||||
const rightSide = new THREE.Mesh(sideGeo, woodMaterial);
|
||||
rightSide.position.set(shelfWidth / 2 - woodThickness / 2, shelfHeight / 2, 0);
|
||||
rightSide.castShadow = true;
|
||||
rightSide.receiveShadow = true;
|
||||
shelfGroup.add(rightSide);
|
||||
|
||||
// Top & Bottom Panels
|
||||
const topBottomGeo = new THREE.BoxGeometry(shelfWidth, woodThickness, shelfDepth);
|
||||
const bottomPanel = new THREE.Mesh(topBottomGeo, woodMaterial);
|
||||
bottomPanel.position.set(0, woodThickness / 2, 0);
|
||||
bottomPanel.receiveShadow = true;
|
||||
shelfGroup.add(bottomPanel);
|
||||
|
||||
const topPanel = new THREE.Mesh(topBottomGeo, woodMaterial);
|
||||
topPanel.position.set(0, shelfHeight - woodThickness / 2, 0);
|
||||
topPanel.castShadow = true;
|
||||
shelfGroup.add(topPanel);
|
||||
|
||||
landingSurfaces.push(topPanel);
|
||||
|
||||
// 2. Individual Shelves & Books
|
||||
const internalHeight = shelfHeight - (2 * woodThickness);
|
||||
const shelfSpacing = internalHeight / numShelves;
|
||||
const internalWidth = shelfWidth - (2 * woodThickness);
|
||||
|
||||
for (let i = 0; i < numShelves; i++) {
|
||||
const currentShelfY = woodThickness + (i * shelfSpacing);
|
||||
|
||||
// Shelf board (skip for the very bottom one as we have a bottom panel)
|
||||
if (i > 0) {
|
||||
const shelfBoard = new THREE.Mesh(
|
||||
new THREE.BoxGeometry(internalWidth, woodThickness, shelfDepth - woodThickness), // Slightly shallower to fit inside back panel
|
||||
woodMaterial
|
||||
);
|
||||
shelfBoard.position.set(0, currentShelfY, woodThickness / 2); // Offset forward slightly
|
||||
shelfBoard.castShadow = true;
|
||||
shelfBoard.receiveShadow = true;
|
||||
shelfGroup.add(shelfBoard);
|
||||
}
|
||||
|
||||
// 3. Procedural Books
|
||||
let currentBookX = -internalWidth / 2 + 0.01; // Start at left inside edge
|
||||
const shelfSurfaceY = currentShelfY + woodThickness / 2;
|
||||
|
||||
while (currentBookX < internalWidth / 2 - 0.05) {
|
||||
// sizes vary
|
||||
const bookWidth = 0.02 + seededRandom() * 0.05;
|
||||
const bookHeight = (shelfSpacing * 0.6) + seededRandom() * (shelfSpacing * 0.1);
|
||||
const bookDepth = 0.15 + seededRandom() * 0.03;
|
||||
|
||||
if (currentBookX + bookWidth > internalWidth / 2) break;
|
||||
|
||||
const bookColor = getRandomColor();
|
||||
const bookMat = new THREE.MeshPhongMaterial({ color: bookColor, shininess: 60 });
|
||||
const bookGeo = new THREE.BoxGeometry(bookWidth, bookHeight, bookDepth);
|
||||
const book = new THREE.Mesh(bookGeo, bookMat);
|
||||
|
||||
// Position: Resting on shelf, pushed towards the back with slight random variation
|
||||
const depthVariation = seededRandom() * 0.05;
|
||||
book.position.set(
|
||||
currentBookX + bookWidth / 2,
|
||||
shelfSurfaceY + bookHeight / 2,
|
||||
-shelfDepth / 2 + woodThickness + bookDepth / 2 + depthVariation
|
||||
);
|
||||
|
||||
book.castShadow = true;
|
||||
book.receiveShadow = true;
|
||||
shelfGroup.add(book);
|
||||
|
||||
currentBookX += bookWidth + 0.002; // Tiny gap between books
|
||||
|
||||
if (seededRandom() > 0.92) {
|
||||
currentBookX += bookWidth * 3; // random bigger gaps
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
scene.add(shelfGroup);
|
||||
}
|
||||
|
||||
function createDoor(x, z, rotY) {
|
||||
const doorGroup = new THREE.Group();
|
||||
doorGroup.position.set(x, 1.1, z); // Centered vertically for a 2.2m door
|
||||
doorGroup.rotation.set(0, rotY, 0);
|
||||
|
||||
// Door Frame
|
||||
const frameMaterial = new THREE.MeshPhongMaterial({ color: 0x473e3a }); // Dark wood for frame
|
||||
const frameTop = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.1, 0.15), frameMaterial);
|
||||
frameTop.position.set(0, 1.15, 0);
|
||||
frameTop.castShadow = true;
|
||||
doorGroup.add(frameTop);
|
||||
|
||||
const frameLeft = new THREE.Mesh(new THREE.BoxGeometry(0.1, 2.3, 0.15), frameMaterial);
|
||||
frameLeft.position.set(-0.55, 0.05, 0);
|
||||
frameLeft.castShadow = true;
|
||||
doorGroup.add(frameLeft);
|
||||
|
||||
const frameRight = new THREE.Mesh(new THREE.BoxGeometry(0.1, 2.3, 0.15), frameMaterial);
|
||||
frameRight.position.set(0.55, 0.05, 0);
|
||||
frameRight.castShadow = true;
|
||||
doorGroup.add(frameRight);
|
||||
|
||||
// Main Door Panel
|
||||
const doorMaterial = new THREE.MeshPhongMaterial({ color: 0x8b5a2b, shininess: 10 }); // Lighter wood for door
|
||||
const door = new THREE.Mesh(new THREE.BoxGeometry(1.0, 2.2, 0.08), doorMaterial);
|
||||
door.castShadow = true;
|
||||
door.receiveShadow = true;
|
||||
doorGroup.add(door);
|
||||
|
||||
// Door Knob
|
||||
const knobMaterial = new THREE.MeshPhongMaterial({ color: 0xd4af37, shininess: 100 }); // Gold/Brass
|
||||
const knob = new THREE.Mesh(new THREE.SphereGeometry(0.05, 16, 16), knobMaterial);
|
||||
knob.position.set(0.4, 0, 0.06); // Position on the right side of the door
|
||||
knob.castShadow = true;
|
||||
doorGroup.add(knob);
|
||||
|
||||
scene.add(doorGroup);
|
||||
}
|
||||
|
||||
// --- VCR Model Function ---
|
||||
function createVcr() {
|
||||
// Materials
|
||||
const vcrBodyMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x222222, // Dark metallic gray
|
||||
shininess: 70,
|
||||
specular: 0x444444
|
||||
});
|
||||
const slotMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x0a0a0a, // Deep black
|
||||
shininess: 5,
|
||||
specular: 0x111111
|
||||
});
|
||||
|
||||
// VCR Body
|
||||
const vcrBodyGeometry = new THREE.BoxGeometry(1.0, 0.2, 0.7);
|
||||
const vcrBody = new THREE.Mesh(vcrBodyGeometry, vcrBodyMaterial);
|
||||
vcrBody.position.y = 0; // Centered
|
||||
vcrBody.castShadow = true;
|
||||
vcrBody.receiveShadow = true;
|
||||
|
||||
// Cassette Slot / Front Face
|
||||
const slotGeometry = new THREE.BoxGeometry(0.9, 0.05, 0.01);
|
||||
const slotMesh = new THREE.Mesh(slotGeometry, slotMaterial);
|
||||
slotMesh.position.set(0, -0.05, 0.35 + 0.005);
|
||||
slotMesh.castShadow = true;
|
||||
slotMesh.receiveShadow = true;
|
||||
|
||||
// VCR Display
|
||||
const displayMesh = createVcrDisplay();
|
||||
displayMesh.position.z = 0.35 + 0.005;
|
||||
displayMesh.position.x = 0.2; // Adjusted X for arrow
|
||||
displayMesh.position.y = 0.03;
|
||||
|
||||
// VCR Group
|
||||
const vcrGroup = new THREE.Group();
|
||||
vcrGroup.add(vcrBody, slotMesh, displayMesh);
|
||||
vcrGroup.position.set(0, 0.1, 0); // Position the whole VCR slightly above the floor
|
||||
|
||||
// Light from the VCR display itself
|
||||
vcrDisplayLight = new THREE.PointLight(0x00ff44, 0.5, 1);
|
||||
vcrDisplayLight.position.set(0.3, 0.03, 0.35 + 0.05); // Move light slightly closer to VCR surface
|
||||
vcrDisplayLight.castShadow = true;
|
||||
vcrDisplayLight.shadow.mapSize.width = 256;
|
||||
vcrDisplayLight.shadow.mapSize.height = 256;
|
||||
vcrGroup.add(vcrDisplayLight);
|
||||
|
||||
return vcrGroup;
|
||||
}
|
||||
|
||||
function createTvSet(x, z, rotY) {
|
||||
// --- Materials (MeshPhongMaterial) ---
|
||||
const darkWood = new THREE.MeshPhongMaterial({ color: 0x3d352e, shininess: 10 });
|
||||
const darkMetal = new THREE.MeshPhongMaterial({
|
||||
color: 0x6b6b6b,
|
||||
shininess: 80,
|
||||
specular: 0x888888
|
||||
});
|
||||
const tvPlastic = new THREE.MeshPhongMaterial({ color: 0x4d4d4d, shininess: 30 });
|
||||
|
||||
const tvGroup = new THREE.Group();
|
||||
|
||||
// --- TV Table Dimensions & Material ---
|
||||
const woodColor = 0x5a3e36; // Dark brown wood
|
||||
const tableHeight = 0.7; // Height from floor to top surface
|
||||
const tableWidth = 2.0;
|
||||
const tableDepth = 1.0;
|
||||
const legThickness = 0.05;
|
||||
const shelfThickness = 0.03;
|
||||
// Use standard material for realistic shadowing
|
||||
const material = new THREE.MeshStandardMaterial({ color: woodColor, roughness: 0.8, metalness: 0.1 });
|
||||
|
||||
// VCR gap dimensions calculation
|
||||
const shelfGap = 0.2; // Height of the VCR opening
|
||||
const shelfY = tableHeight - shelfGap - (shelfThickness / 2); // Y position of the bottom shelf
|
||||
|
||||
|
||||
// 2. Table Top
|
||||
const topGeometry = new THREE.BoxGeometry(tableWidth, shelfThickness, tableDepth);
|
||||
const tableTop = new THREE.Mesh(topGeometry, material);
|
||||
tableTop.position.set(0, tableHeight, 0);
|
||||
tableTop.castShadow = true;
|
||||
tableTop.receiveShadow = true;
|
||||
tvGroup.add(tableTop);
|
||||
|
||||
// 3. VCR Shelf (Middle Shelf)
|
||||
const shelfGeometry = new THREE.BoxGeometry(tableWidth, shelfThickness, tableDepth);
|
||||
const vcrShelf = new THREE.Mesh(shelfGeometry, material);
|
||||
vcrShelf.position.set(0, shelfY, 0);
|
||||
vcrShelf.castShadow = true;
|
||||
vcrShelf.receiveShadow = true;
|
||||
tvGroup.add(vcrShelf);
|
||||
|
||||
// 4. Side Walls for VCR Compartment (NEW CODE)
|
||||
const wallHeight = shelfGap; // Height is the gap itself
|
||||
const wallThickness = shelfThickness; // Reuse the shelf thickness for the wall width/depth
|
||||
const wallGeometry = new THREE.BoxGeometry(wallThickness, wallHeight, tableDepth);
|
||||
|
||||
// Calculate the Y center position for the wall
|
||||
const wallYCenter = tableHeight - (shelfThickness / 2) - (wallHeight / 2);
|
||||
|
||||
// Calculate the X position to be flush with the table sides
|
||||
const wallXPosition = (tableWidth / 2) - (wallThickness / 2);
|
||||
|
||||
// Left Wall
|
||||
const sideWallLeft = new THREE.Mesh(wallGeometry, material);
|
||||
sideWallLeft.position.set(-wallXPosition, wallYCenter, 0);
|
||||
sideWallLeft.castShadow = true;
|
||||
sideWallLeft.receiveShadow = true;
|
||||
tvGroup.add(sideWallLeft);
|
||||
|
||||
// Right Wall
|
||||
const sideWallRight = new THREE.Mesh(wallGeometry, material);
|
||||
sideWallRight.position.set(wallXPosition, wallYCenter, 0);
|
||||
sideWallRight.castShadow = true;
|
||||
sideWallRight.receiveShadow = true;
|
||||
tvGroup.add(sideWallRight);
|
||||
|
||||
// 5. Legs
|
||||
const legHeight = shelfY; // Legs go from the floor (y=0) to the shelf (y=shelfY)
|
||||
const legGeometry = new THREE.BoxGeometry(legThickness, legHeight, legThickness);
|
||||
|
||||
// Utility function to create and position a leg
|
||||
const createLeg = (x, z) => {
|
||||
const leg = new THREE.Mesh(legGeometry, material);
|
||||
// Position the leg so the center is at half its height
|
||||
leg.position.set(x, legHeight / 2, z);
|
||||
leg.castShadow = true;
|
||||
leg.receiveShadow = true;
|
||||
return leg;
|
||||
};
|
||||
|
||||
// Calculate offsets for positioning the legs near the corners
|
||||
const offset = (tableWidth / 2) - (legThickness * 2);
|
||||
const depthOffset = (tableDepth / 2) - (legThickness * 2);
|
||||
|
||||
// Front Left
|
||||
tvGroup.add(createLeg(-offset, depthOffset));
|
||||
// Front Right
|
||||
tvGroup.add(createLeg(offset, depthOffset));
|
||||
// Back Left
|
||||
tvGroup.add(createLeg(-offset, -depthOffset));
|
||||
// Back Right
|
||||
tvGroup.add(createLeg(offset, -depthOffset));
|
||||
|
||||
// --- 2. The TV box ---
|
||||
const cabinetGeometry = new THREE.BoxGeometry(1.75, 1.5, 1.0);
|
||||
const cabinet = new THREE.Mesh(cabinetGeometry, tvPlastic);
|
||||
cabinet.position.y = 1.51;
|
||||
cabinet.castShadow = true;
|
||||
cabinet.receiveShadow = true;
|
||||
tvGroup.add(cabinet);
|
||||
|
||||
// --- 3. Screen Frame ---
|
||||
const frameGeometry = new THREE.BoxGeometry(1.5, 1.3, 0.1);
|
||||
const frameMaterial = new THREE.MeshPhongMaterial({ color: 0x111111, shininess: 20 });
|
||||
const frame = new THREE.Mesh(frameGeometry, frameMaterial);
|
||||
frame.position.set(0, 1.5, 0.68);
|
||||
frame.castShadow = true;
|
||||
frame.receiveShadow = true;
|
||||
tvGroup.add(frame);
|
||||
|
||||
// --- 4. Curved Screen (CRT Effect) ---
|
||||
const screenRadius = 3.0; // Radius for the subtle curve
|
||||
const screenWidth = 1.4;
|
||||
const screenHeight = 1.2;
|
||||
const thetaLength = screenWidth / screenRadius; // Calculate angle needed for the arc
|
||||
|
||||
// Use CylinderGeometry as a segment
|
||||
const screenGeometry = new THREE.CylinderGeometry(
|
||||
screenRadius, screenRadius,
|
||||
screenHeight, // Cylinder height is the vertical dimension of the screen
|
||||
32,
|
||||
1,
|
||||
true,
|
||||
(Math.PI / 2) - (thetaLength / 2), // Start angle to center the arc
|
||||
thetaLength // Arc length (width)
|
||||
);
|
||||
|
||||
// Rotate the cylinder segment:
|
||||
// 1. Rotate around X-axis by 90 degrees to lay the height (Y) along Z (depth).
|
||||
//screenGeometry.rotateX(Math.PI / 2);
|
||||
// 2. Rotate around Y-axis by 90 degrees to align the segment's arc across the X-axis (width).
|
||||
screenGeometry.rotateY(-Math.PI/2);
|
||||
|
||||
const screenMaterial = new THREE.MeshBasicMaterial({ color: 0x000000 });
|
||||
tvScreen = new THREE.Mesh(screenGeometry, screenMaterial);
|
||||
|
||||
// Position the curved screen
|
||||
tvScreen.position.set(0.0, 1.5, -2.1);
|
||||
tvScreen.material = new THREE.MeshPhongMaterial({
|
||||
color: 0x0a0a0a, // Deep black
|
||||
shininess: 5,
|
||||
specular: 0x111111
|
||||
});
|
||||
tvScreen.material.needsUpdate = true;
|
||||
tvGroup.add(tvScreen);
|
||||
|
||||
tvGroup.position.set(x, 0, z);
|
||||
tvGroup.rotation.y = rotY;
|
||||
|
||||
// Light from the screen (initially low intensity, will increase when video loads)
|
||||
screenLight = new THREE.PointLight(0xffffff, 0, 10);
|
||||
screenLight.position.set(0, 1.5, 1.0);
|
||||
// Screen light casts shadows
|
||||
screenLight.castShadow = true;
|
||||
screenLight.shadow.mapSize.width = 1024;
|
||||
screenLight.shadow.mapSize.height = 1024;
|
||||
screenLight.shadow.camera.near = 0.2;
|
||||
screenLight.shadow.camera.far = 5;
|
||||
tvGroup.add(screenLight);
|
||||
|
||||
// -- VCR --
|
||||
const vcr = createVcr();
|
||||
vcr.position.set(-0.3, 0.6, 0.05);
|
||||
tvGroup.add(vcr);
|
||||
|
||||
scene.add(tvGroup);
|
||||
}
|
||||
|
||||
// --- Scene Modeling Function ---
|
||||
function createSceneObjects() {
|
||||
// --- Materials (MeshPhongMaterial) ---
|
||||
const darkWood = new THREE.MeshPhongMaterial({ color: 0x3d352e, shininess: 10 });
|
||||
const darkMetal = new THREE.MeshPhongMaterial({
|
||||
color: 0x6b6b6b,
|
||||
shininess: 80,
|
||||
specular: 0x888888
|
||||
});
|
||||
const tvPlastic = new THREE.MeshPhongMaterial({ color: 0x2d251e, shininess: 10 });
|
||||
|
||||
// --- 1. Floor ---
|
||||
const floorGeometry = new THREE.PlaneGeometry(20, 20);
|
||||
const floorTexture = loader.load('./textures/floor.jpg');
|
||||
floorTexture.wrapS = THREE.RepeatWrapping;
|
||||
floorTexture.wrapT = THREE.RepeatWrapping;
|
||||
floorTexture.repeat.set(roomSize, roomSize);
|
||||
const floorMaterial = new THREE.MeshPhongMaterial({ map: floorTexture, color: 0x555555, shininess: 5 });
|
||||
const floor = new THREE.Mesh(floorGeometry, floorMaterial);
|
||||
floor.rotation.x = -Math.PI / 2;
|
||||
floor.position.y = 0;
|
||||
floor.receiveShadow = true;
|
||||
scene.add(floor);
|
||||
|
||||
landingSurfaces.push(floor);
|
||||
|
||||
createTvSet(-roomSize/2 + 1.2, -roomSize/2 + 0.8, Math.PI * 0.1);
|
||||
|
||||
// --- 5. Lamp (On the table, right side) ---
|
||||
const lampBase = new THREE.CylinderGeometry(0.05, 0.2, 0.1, 12);
|
||||
const lampPole = new THREE.CylinderGeometry(0.02, 0.02, 1.5, 8);
|
||||
const lampShade = new THREE.ConeGeometry(0.2, 0.4, 16);
|
||||
|
||||
const baseMesh = new THREE.Mesh(lampBase, darkMetal);
|
||||
const poleMesh = new THREE.Mesh(lampPole, darkMetal);
|
||||
const shadeMesh = new THREE.Mesh(lampShade, darkMetal);
|
||||
|
||||
// Ensure lamp parts cast shadows
|
||||
baseMesh.castShadow = true; baseMesh.receiveShadow = true;
|
||||
poleMesh.castShadow = true; poleMesh.receiveShadow = true;
|
||||
//shadeMesh.castShadow = true; shadeMesh.receiveShadow = true;
|
||||
|
||||
baseMesh.position.y = -0.6;
|
||||
poleMesh.position.y = 0.0;
|
||||
shadeMesh.position.y = 0.8 + 0.1;
|
||||
shadeMesh.rotation.x = Math.PI;
|
||||
|
||||
// Lamp Light (Warm Glow) - Configured to cast shadows
|
||||
lampLightPoint = new THREE.PointLight(0xffaa00, originalLampIntensity, 4);
|
||||
lampLightPoint.position.set(-0.01, roomHeight-0.9, 0.01);
|
||||
lampLightPoint.castShadow = true;
|
||||
// Optimization: Reduced map size and far plane to ease resource burden
|
||||
lampLightPoint.shadow.mapSize.width = 512;
|
||||
lampLightPoint.shadow.mapSize.height = 512;
|
||||
lampLightPoint.shadow.camera.near = 0.1;
|
||||
lampLightPoint.shadow.camera.far = 4; // Matches the light's attenuation distance (4)
|
||||
lampLightPoint.penumbra = 0.5;
|
||||
|
||||
lampLightSpot = new THREE.SpotLight(0xffaa00, originalLampIntensity, 4);
|
||||
lampLightSpot.position.set(-0.01, 1.0, 0.01);
|
||||
lampLightSpot.target.position.set(0, 5, 0);
|
||||
lampLightSpot.castShadow = true;
|
||||
// Optimization: Reduced map size and far plane to ease resource burden
|
||||
lampLightSpot.shadow.mapSize.width = 512;
|
||||
lampLightSpot.shadow.mapSize.height = 512;
|
||||
lampLightSpot.shadow.camera.near = 0.1;
|
||||
lampLightSpot.shadow.camera.far = 4; // Matches the light's attenuation distance (4)
|
||||
lampLightSpot.penumbra = 0.5;
|
||||
|
||||
const lampGroup = new THREE.Group();
|
||||
lampGroup.add(baseMesh, poleMesh, shadeMesh, lampLightSpot, lampLightSpot.target, lampLightPoint);
|
||||
lampGroup.position.set(0.8, 0.7, -roomSize/2+0.5);
|
||||
|
||||
scene.add(lampGroup);
|
||||
|
||||
landingSurfaces.push(shadeMesh);
|
||||
|
||||
// --- 7. Old Camera (On the table) ---
|
||||
const cameraBody = new THREE.BoxGeometry(0.4, 0.3, 0.15);
|
||||
const cameraLens = new THREE.CylinderGeometry(0.08, 0.08, 0.05, 12);
|
||||
const cameraMaterial = new THREE.MeshPhongMaterial({
|
||||
color: 0x333333,
|
||||
shininess: 50,
|
||||
specular: 0x444444
|
||||
});
|
||||
|
||||
const cameraMesh = new THREE.Mesh(cameraBody, cameraMaterial);
|
||||
const lensMesh = new THREE.Mesh(cameraLens, cameraMaterial);
|
||||
lensMesh.position.z = 0.15;
|
||||
lensMesh.rotation.x = Math.PI/2;
|
||||
|
||||
cameraMesh.add(lensMesh);
|
||||
cameraMesh.position.set(-1.7, 0.15, 0.4);
|
||||
cameraMesh.rotation.y = -Math.PI / 10;
|
||||
cameraMesh.castShadow = true; cameraMesh.receiveShadow = true;
|
||||
scene.add(cameraMesh);
|
||||
|
||||
// --- 8. Pizza Box ---
|
||||
const boxGeometry = new THREE.BoxGeometry(0.5, 0.05, 0.5);
|
||||
const boxMaterial = new THREE.MeshPhongMaterial({ color: 0xe0c896, shininess: 5 });
|
||||
const pizzaBox = new THREE.Mesh(boxGeometry, boxMaterial);
|
||||
pizzaBox.position.set(-1.8, 0.025, -0.8);
|
||||
pizzaBox.rotation.y = Math.PI / 5;
|
||||
pizzaBox.castShadow = true; pizzaBox.receiveShadow = true;
|
||||
scene.add(pizzaBox);
|
||||
|
||||
// --- 8. Cassette ---
|
||||
const cassetteGeometry = new THREE.BoxGeometry(0.2, 0.05, 0.45);
|
||||
const cassetteMaterial = new THREE.MeshPhongMaterial({ color: 0xe0c896, shininess: 5 });
|
||||
const cassette = new THREE.Mesh(cassetteGeometry, cassetteMaterial);
|
||||
cassette.position.set(-0.5, 0.025, -1.4);
|
||||
cassette.rotation.y = Math.PI / 3;
|
||||
cassette.castShadow = true; cassette.receiveShadow = true;
|
||||
scene.add(cassette);
|
||||
|
||||
createDoor(roomSize/2, -roomSize/2 * 0.5, -Math.PI/2);
|
||||
createBookshelf(-roomSize/2 + 0.2, roomSize/2*0.2, Math.PI/2, 0);
|
||||
createBookshelf(-roomSize/2 + 0.2, roomSize/2*0.7, Math.PI/2, 0);
|
||||
createBookshelf(roomSize/2 * 0.7, -roomSize/2+0.3, 0, 1);
|
||||
|
||||
setupFlies();
|
||||
}
|
||||
|
||||
216
tv-player/src/vcr-display.js
Normal file
216
tv-player/src/vcr-display.js
Normal file
@ -0,0 +1,216 @@
|
||||
let vcrDisplayTexture;
|
||||
let blinkState = false;
|
||||
let lastBlinkToggleTime = 0;
|
||||
// --- Segment Display Definitions ---
|
||||
|
||||
// Define which segments (indexed 0-6: A, B, C, D, E, F, G) are active for each digit
|
||||
// A=Top, B=TR, C=BR, D=Bottom, E=BL, F=TL, G=Middle
|
||||
const SEGMENTS = {
|
||||
'0': [1, 1, 1, 1, 1, 1, 0],
|
||||
'1': [0, 1, 1, 0, 0, 0, 0],
|
||||
'2': [1, 1, 0, 1, 1, 0, 1],
|
||||
'3': [1, 1, 1, 1, 0, 0, 1],
|
||||
'4': [0, 1, 1, 0, 0, 1, 1],
|
||||
'5': [1, 0, 1, 1, 0, 1, 1],
|
||||
'6': [1, 0, 1, 1, 1, 1, 1],
|
||||
'7': [1, 1, 1, 0, 0, 0, 0],
|
||||
'8': [1, 1, 1, 1, 1, 1, 1],
|
||||
'9': [1, 1, 1, 1, 0, 1, 1],
|
||||
' ': [0, 0, 0, 0, 0, 0, 0]
|
||||
};
|
||||
|
||||
const SEG_THICKNESS = 3; // Thickness of the segment line in canvas pixels
|
||||
const SEG_PADDING = 2; // Padding within a digit segment's box
|
||||
|
||||
// Colors for active and inactive segments
|
||||
const COLOR_ACTIVE = '#00ff44'; // Bright Fluorescent Green
|
||||
const COLOR_INACTIVE = '#1a1a1a'; // Dim dark gray for 'ghost' segments
|
||||
|
||||
/**
|
||||
* Draws a single 7-segment digit by drawing active segments.
|
||||
* Now includes drawing of inactive (ghost) segments for better readability.
|
||||
* @param {CanvasRenderingContext2D} ctx
|
||||
* @param {string} digit The digit character (0-9).
|
||||
* @param {number} x Left position of the digit area.
|
||||
* @param {number} y Top position of the digit area.
|
||||
* @param {number} H Total height of the digit area.
|
||||
*/
|
||||
function drawSegmentDigit(ctx, digit, x, y, H) {
|
||||
const segments = SEGMENTS[digit] || SEGMENTS[' '];
|
||||
const W = H / 2; // Width is half the height for standard aspect ratio
|
||||
|
||||
// Segment dimensions relative to W and H
|
||||
const hLength = W - 2 * SEG_PADDING;
|
||||
// Vertical length calculation: (Total height - 2 paddings - 3 horizontal thicknesses) / 2
|
||||
const vLength = (H - (2 * SEG_PADDING) - (3 * SEG_THICKNESS)) / 2;
|
||||
|
||||
// Helper to draw horizontal segment (A, G, D)
|
||||
const drawH = (index, x_start, y_start) => {
|
||||
ctx.fillStyle = segments[index] ? COLOR_ACTIVE : COLOR_INACTIVE;
|
||||
ctx.fillRect(x_start + SEG_PADDING, y_start, hLength, SEG_THICKNESS);
|
||||
};
|
||||
|
||||
// Helper to draw vertical segment (F, B, E, C)
|
||||
const drawV = (index, x_start, y_start) => {
|
||||
ctx.fillStyle = segments[index] ? COLOR_ACTIVE : COLOR_INACTIVE;
|
||||
ctx.fillRect(x_start, y_start, SEG_THICKNESS, vLength);
|
||||
};
|
||||
|
||||
// Define segment positions
|
||||
|
||||
// Horizontal segments
|
||||
// A (Top) - index 0
|
||||
drawH(0, x, y + SEG_PADDING);
|
||||
// G (Middle) - index 6
|
||||
drawH(6, x, y + H/2 - SEG_THICKNESS/2);
|
||||
// D (Bottom) - index 3
|
||||
drawH(3, x, y + H - SEG_PADDING - SEG_THICKNESS);
|
||||
|
||||
// Vertical segments (Top Half)
|
||||
const topVStart = y + SEG_PADDING + SEG_THICKNESS;
|
||||
const rightVStart = x + W - SEG_PADDING - SEG_THICKNESS;
|
||||
|
||||
// F (Top-Left) - index 5
|
||||
drawV(5, x + SEG_PADDING, topVStart);
|
||||
|
||||
// B (Top-Right) - index 1
|
||||
drawV(1, rightVStart, topVStart);
|
||||
|
||||
// Vertical segments (Bottom Half)
|
||||
const bottomVStart = y + H/2 + SEG_THICKNESS/2;
|
||||
|
||||
// E (Bottom-Left) - index 4
|
||||
drawV(4, x + SEG_PADDING, bottomVStart);
|
||||
|
||||
// C (Bottom-Right) - index 2
|
||||
drawV(2, rightVStart, bottomVStart);
|
||||
}
|
||||
|
||||
// Function to draw the colon (two dots), now with blinking logic
|
||||
function drawColon(ctx, x, y, H, isVisible) {
|
||||
const dotSize = 4;
|
||||
ctx.fillStyle = COLOR_ACTIVE;
|
||||
|
||||
if (isVisible) {
|
||||
// Top dot
|
||||
ctx.fillRect(x, y + H * 0.3 - dotSize / 2, dotSize, dotSize);
|
||||
// Bottom dot
|
||||
ctx.fillRect(x, y + H * 0.7 - dotSize / 2, dotSize, dotSize);
|
||||
} else {
|
||||
// Draw inactive colon if not visible, for consistency
|
||||
ctx.fillStyle = COLOR_INACTIVE;
|
||||
ctx.fillRect(x, y + H * 0.3 - dotSize / 2, dotSize, dotSize);
|
||||
ctx.fillRect(x, y + H * 0.7 - dotSize / 2, dotSize, dotSize);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Draws a simple playback arrow (triangle)
|
||||
* @param {CanvasRenderingContext2D} ctx
|
||||
* @param {number} x Left position of the arrow area.
|
||||
* @param {number} y Top position of the arrow area.
|
||||
* @param {number} H Total height of the arrow area.
|
||||
*/
|
||||
function drawPlaybackArrow(ctx, x, y, H) {
|
||||
const arrowWidth = H * 0.4; // Arrow width relative to digit height
|
||||
const arrowHeight = H * 0.4; // Arrow height relative to digit height
|
||||
|
||||
ctx.fillStyle = COLOR_ACTIVE;
|
||||
ctx.beginPath();
|
||||
ctx.moveTo(x, y + H * 0.5 - arrowHeight / 2); // Top point
|
||||
ctx.lineTo(x + arrowWidth, y + H * 0.5); // Right point (center)
|
||||
ctx.lineTo(x, y + H * 0.5 + arrowHeight / 2); // Bottom point
|
||||
ctx.closePath();
|
||||
ctx.fill();
|
||||
}
|
||||
|
||||
|
||||
// Main function to render the entire time string using segments
|
||||
function drawSegmentDisplay(ctx, timeString) {
|
||||
const canvasWidth = ctx.canvas.width;
|
||||
const canvasHeight = ctx.canvas.height;
|
||||
const timeStringLength = timeString.length;
|
||||
|
||||
// Clear display to dark background
|
||||
ctx.fillStyle = '#0a0a0a';
|
||||
ctx.fillRect(0, 0, canvasWidth, canvasHeight);
|
||||
|
||||
// Constants for layout
|
||||
const charSpacing = 8; // Spacing between digits
|
||||
const digitHeight = canvasHeight - 2 * SEG_PADDING;
|
||||
const digitWidth = digitHeight / 2 + SEG_PADDING; // Total width slot for one digit
|
||||
const colonWidth = 6;
|
||||
const arrowWidth = digitHeight * 0.7; // Approx width for the arrow
|
||||
const arrowPadding = 10; // Space between arrow and first digit
|
||||
|
||||
// Calculate total display width including arrow and spaces
|
||||
const totalDisplayWidth = arrowWidth + arrowPadding + (4 * digitWidth) + colonWidth + ((timeStringLength - 1) * charSpacing);
|
||||
|
||||
// Calculate starting X to center the display
|
||||
let currentX = (canvasWidth - totalDisplayWidth) / 2;
|
||||
const currentY = SEG_PADDING;
|
||||
|
||||
// Draw Playback Arrow
|
||||
if (isVideoLoaded && videoElement.readyState >= 3) {
|
||||
drawPlaybackArrow(ctx, currentX, currentY, digitHeight);
|
||||
}
|
||||
currentX += arrowWidth + arrowPadding; // Move X after arrow and its padding
|
||||
|
||||
for (let i = 0; i < timeStringLength; i++) {
|
||||
const char = timeString[i];
|
||||
|
||||
if (char === ':') {
|
||||
drawColon(ctx, currentX, currentY, digitHeight, blinkState); // Pass blinkState
|
||||
currentX += colonWidth;
|
||||
} else if (char >= '0' && char <= '9') {
|
||||
drawSegmentDigit(ctx, char, currentX, currentY, digitHeight);
|
||||
currentX += digitWidth;
|
||||
}
|
||||
|
||||
// Add spacing only if it's not the last element
|
||||
if (i < timeStringLength - 1) {
|
||||
currentX += charSpacing;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- VCR Display Functions ---
|
||||
function createVcrDisplay() {
|
||||
const canvas = document.createElement('canvas');
|
||||
canvas.width = 160; // Increased width for arrow and better spacing
|
||||
canvas.height = 32;
|
||||
const ctx = canvas.getContext('2d');
|
||||
|
||||
ctx.fillStyle = '#0a0a0a';
|
||||
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
||||
|
||||
vcrDisplayTexture = new THREE.CanvasTexture(canvas);
|
||||
vcrDisplayTexture.needsUpdate = true;
|
||||
|
||||
const displayGeometry = new THREE.PlaneGeometry(0.45, 0.1); // Adjust geometry width for new canvas size
|
||||
const displayMaterial = new THREE.MeshBasicMaterial({
|
||||
map: vcrDisplayTexture,
|
||||
side: THREE.FrontSide,
|
||||
color: 0xffffff,
|
||||
transparent: true,
|
||||
emissive: 0x00ff44,
|
||||
emissiveIntensity: 0.1
|
||||
});
|
||||
|
||||
const displayMesh = new THREE.Mesh(displayGeometry, displayMaterial);
|
||||
return displayMesh;
|
||||
}
|
||||
|
||||
function updateVcrDisplay(time) {
|
||||
if (!vcrDisplayTexture) return;
|
||||
|
||||
const canvas = vcrDisplayTexture.image;
|
||||
const ctx = canvas.getContext('2d');
|
||||
|
||||
const timeString = formatTime(time);
|
||||
|
||||
// Uses the new segment drawing function with ghosting, including blinkState for colon
|
||||
drawSegmentDisplay(ctx, timeString);
|
||||
|
||||
vcrDisplayTexture.needsUpdate = true;
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user