First version

This commit is contained in:
Dejvino 2021-08-28 18:03:33 +02:00
commit 9e3679b6dd
6 changed files with 561 additions and 0 deletions

83
BatteryBank.scad Normal file
View File

@ -0,0 +1,83 @@
include <BOSL/constants.scad>
use <BOSL/transforms.scad>
use <BOSL/shapes.scad>
model = 0;
bank_wall = 2;
bank_inside_size = [94, 19, 19];
bank_socket_size = [bank_inside_size.x + 2, bank_inside_size.y + 2, 4];
pcb_size = [20, 19, 1];
separator_size = [2.5, pcb_size.y - 3, 12.5];
separator_pos = [bank_inside_size.x/2 - pcb_size.x - 0.2 - separator_size.x/2, -3, -bank_inside_size.z/2 + separator_size.z/2];
joiner_size = [5, 5, bank_inside_size.z];
joiner_pos = [0, bank_inside_size.y/2 + bank_wall + joiner_size.y/2, 0];
joiner_spread = 60;
bank_joiner_screw_diam = 2.2;
window_pos = [bank_inside_size.x/2, 0, 0];
window_size = [10, bank_inside_size.y - 1.8*2, 12];
module bank_inside() {
cube(bank_inside_size, center=true);
}
module bank_joiner() {
difference() {
cuboid(joiner_size, chamfer=1, edges=EDGES_Z_BK);
down(joiner_size.z/2) cylinder(d=bank_joiner_screw_diam, h=joiner_size.z, $fn=12);
}
}
module bank() {
difference() {
minkowski() {
cube(bank_inside_size, center=true);
sphere(r=bank_wall, $fn=18);
}
bank_inside();
translate(window_pos) cube(window_size, center=true);
}
translate(separator_pos) cube(separator_size, center=true);
translate(joiner_pos) {
left(joiner_spread/2) bank_joiner();
right(joiner_spread/2) bank_joiner();
}
}
module bank_divider(socket) {
up(5.5) {
difference() {
down(50) cube([500, 100, 100], center=true);
scale(socket ? 1 : [0.995, 0.97, 0.96]) cube(bank_socket_size, center=true);
}
}
}
module model_bank_bottom() {
up(bank_wall + bank_inside_size.z/2)
intersection() {
bank();
bank_divider(socket=true);
}
}
module model_bank_top() {
up(bank_wall + bank_inside_size.z/2)
difference() {
bank();
bank_divider(socket=false);
}
}
if (model == 0) {
model_bank_bottom();
model_bank_top();
}
if (model == 1) {
model_bank_bottom();
}
if (model == 2) {
model_bank_top();
}

67
Main.scad Normal file
View File

@ -0,0 +1,67 @@
include <BOSL/constants.scad>
use <BOSL/transforms.scad>
use <SensorBox.scad>
use <BatteryBank.scad>
use <ServoGauge.scad>
use <Vitamins.scad>
module joiner_box_battery() {
up(9) fwd(35) cube([90, 2, 14], center=true);
}
module pathway_box_battery() {
up(12) fwd(35) left(38) cube([12, 10, 6], center=true);
up(12) fwd(32) right(10) cube([90, 2, 6], center=true);
}
module pathway_box_servo() {
up(8) fwd(0) right(58) cube([12, 45, 6], center=true);
}
model = 0;
function isModel(m) = (model == 0 || m == model);
sb_x = 72;
pb_x = 0;
pb_y = 47;
if (isModel(1)) {
difference() {
union() {
difference() {
model_box();
right(sb_x) model_servo_box();
}
joiner_box_battery();
fwd(pb_y) right(pb_x) zrot(180) model_bank_bottom();
fwd(0) right(sb_x) {
difference() {
model_servo_box_bottom();
up(12) fwd(get_servo_box_size().y/2 - 4) {
left(6) xrot(90) {
%switch();
switch();
}
right(6) xrot(90) {
%switch();
switch();
}
right(18) xrot(90) {
%switch();
switch();
}
}
}
}
}
pathway_box_battery();
pathway_box_servo();
}
}
if (isModel(2)) {
fwd(pb_y) right(pb_x) zrot(180) model_bank_top();
}
if (isModel(3)) {
right(sb_x) model_servo_box_top();
}

127
SensorBox.scad Normal file
View File

@ -0,0 +1,127 @@
include <BOSL/constants.scad>
use <BOSL/transforms.scad>
use <BOSL/shapes.scad>
xray = false;
model = 1;
pcb_pos = [0, 0, 6];
pcb_size = [108, 63, 2];
sensor_size = [pcb_size.x, pcb_size.y, 18 + 2];
pcb_stand_diam = 5.2;
pcb_hole_diam = 3;
box_wall = 2;
box_wall_rounding = 1;
box_core_size = [sensor_size.x + 9 + box_wall*2, sensor_size.y + 3 + box_wall*2, sensor_size.z + box_wall*1.8];
/*box_switchboard_size = [16, box_core_size.y, box_core_size.z];
box_switchboard_chamber_pos = [(box_core_size.x + box_switchboard_size.x)/2 - 2*box_wall, 0, box_switchboard_size.z/2];
box_switchboard_chamber_size = [box_switchboard_size.x + box_wall, box_switchboard_size.y - box_wall*2, box_switchboard_size.z - box_wall*3];*/
box_cavity_size = [sensor_size.x + 4, sensor_size.y + 1, sensor_size.z + box_wall*2];
box_lid_pos = [0, 0, sensor_size.z];
box_lid_size = [115, 67.5, 1.7];
box_pos = [/*box_switchboard_size.x/2*/0, 0, 0];
box_size = [box_core_size.x /*+ box_switchboard_size.x*/, box_core_size.y, box_core_size.z];
function get_servo_box_size() = box_size;
module foreach_mount_hole() {
for (x = [0:1]) {
for (y = [0:1]) {
left((1-2*x)*(pcb_size.x/2 - pcb_stand_diam/2 - pcb_hole_diam/4 + 0.5))
fwd((1-2*y)*(pcb_size.y/2 - pcb_stand_diam/2 - pcb_hole_diam/4))
children();
}
}
}
module pcb_mount_holes() {
foreach_mount_hole() {
cylinder(h=sensor_size.z, d=pcb_hole_diam, $fn=10);
}
}
module pcb_stands() {
foreach_mount_hole() {
cylinder(h=sensor_size.z, d=pcb_stand_diam + 1.8, $fn=15);
cylinder(h=sensor_size.z + 5.6, d=pcb_hole_diam + 1.0, $fn=10);
}
}
module sensor_connectors_power() {
pwr_diam=10;
fwd(pcb_size.y/2 - 22.3) right(pcb_size.x/2 - 2) up(pcb_pos.z + 8.2) zrot(-90) xrot(-90) cylinder(h=50, d1=pwr_diam, d2=pwr_diam+2, $fn=20);
}
module sensor_connectors_space() {
jack_diam=12;
fwd(pcb_size.y/2 - 15.5) left(pcb_size.x/2 - 2) up(pcb_pos.z + 4) zrot(-90) xrot(90) cylinder(h=/*20*/7, d=jack_diam, $fn=20);
//sensor_connectors_power();
/*switch_size=[20, 8, 3.8];
back(pcb_size.y/2 - 28.2) right(pcb_size.x/2 + switch_size.x/2 - 2) up(pcb_pos.z + switch_size.z/2 + 2.3) cube(switch_size, center=true);*/
/*conn_size=[20, 8, 3.8];
back(3) left(pcb_size.x/2 + conn_size.x/2 - 2) up(pcb_pos.z + conn_size.z/2 + 2.3) cube(conn_size, center=true);*/
}
module sensor() {
difference() {
translate(pcb_pos) up(pcb_size.z/2)
cube(pcb_size, center=true);
pcb_mount_holes();
}
pcb_stands();
}
module sensor_lid() {
difference() {
translate(box_lid_pos) up(box_lid_size.z/2)
cube(box_lid_size, center=true);
pcb_mount_holes();
}
}
// ----
module box() {
difference() {
translate(box_pos) up(box_size.z/2) cuboid(box_size, chamfer=box_wall_rounding);
up(sensor_size.z/2 + box_wall*2.5) cube(box_cavity_size, center=true);
up(box_lid_size.z/2 + box_wall) translate(box_lid_pos) cube(box_lid_size, center=true);
up(box_wall) sensor_connectors_space();
up(box_wall) pcb_stands();
up(box_wall) up(sensor_size.z) xrot(180) pcb_stands();
/*up(box_size.z - box_wall) {
back(box_size.y/2 - 12) right(box_size.x/2 - 2) switch();
back(box_size.y/2 - 32) right(box_size.x/2 - 2) switch();
fwd(box_size.y/2 - 12) right(box_size.x/2 - 2) switch();
}*/
//translate(box_switchboard_chamber_pos) cuboid(box_switchboard_chamber_size, chamfer=1);
}
}
module model_box() {
box();
}
// ----
if (xray) {
intersection() {
box();
down(500) left(10) fwd(10) cube([1000, 1000, 1000]);
}
} else {
box();
}
if (model == 0) {
up(box_wall) union() {
//sensor();
//sensor_lid();
%sensor_connectors_space();
}
}

143
ServoGauge.scad Normal file
View File

@ -0,0 +1,143 @@
include <BOSL/constants.scad>
use <BOSL/transforms.scad>
use <BOSL/shapes.scad>
use <SensorBox.scad>
use <Vitamins.scad>
servo_mount_size = [12, 32, 2.5];
servo_mount_pos = [0, 0, 16];
servo_mount_hole_diam = 2;
servo_core_size = [12, 23, 22.3];
servo_gears_size = [servo_core_size.x, servo_core_size.x, 26.5];
servo_gears_pos = [0, -(servo_core_size.y/2 - servo_gears_size.y/2), 0];
servo_centergears_size = [servo_core_size.x/2, servo_core_size.x/2, servo_gears_size.z];
servo_centergears_pos = [0, 0, 0];
servo_shaft_size = [1, 1, 28.5];
servo_shaft_pos = servo_gears_pos;
display_pos = [0, 8, servo_core_size.z];
box_wall = 2;
servo_box_round = 1;
servo_box_size = [40, get_servo_box_size().y, servo_core_size.z + box_wall*2];
servo_box_chamber = [servo_box_size.x - box_wall*2, servo_box_size.y - box_wall*2, servo_box_size.z - box_wall*2];
servo_box_chamber_walled = [servo_box_chamber.x + box_wall, servo_box_chamber.y + box_wall, servo_box_chamber.z + box_wall];
servo_box_pos = [6, 0, servo_box_size.z/2 - box_wall];
servo_box_socket_size = [servo_box_size.x, servo_box_size.y, 4];
servo_box_screw_joiner_size = [5, 5, 20];
servo_box_screw_joiner_pos = [servo_box_size.x/2 + servo_box_screw_joiner_size.x/2, 0, 2];
module servo_mount_holes() {
for (i = [0:1]) {
down(servo_mount_size.z)
fwd((1-2*i)*(servo_mount_size.y/2 - servo_mount_hole_diam) + 0.5*(i+1))
cylinder(h=servo_mount_size.z*4, d=servo_mount_hole_diam, $fn=10);
}
}
module servo() {
up(servo_core_size.z/2)
cube(servo_core_size, center=true);
up(servo_mount_size.z/2) translate(servo_mount_pos)
difference() {
cube(servo_mount_size, center=true);
servo_mount_holes();
}
translate(servo_gears_pos) cylinder(d=servo_gears_size.x, h=servo_gears_size.z, $fn=30);
translate(servo_centergears_pos) cylinder(d=servo_centergears_size.x, h=servo_centergears_size.z, $fn=20);
translate(servo_shaft_pos) cylinder(d=servo_shaft_size.x, h=servo_shaft_size.z, $fn=20);
}
display_needle_length = 15;
module display_mount_holes() {
translate(-servo_shaft_pos) {
#servo_mount_holes();
}
}
module display() {
angle_max = 180;
angle_gap = 8;
module display_pie() {
up(1) zrot(-90 + angle_gap/2)
pie_slice(ang=angle_max-angle_gap, l=2, r=display_needle_length);
}
difference() {
//up(2/2) cube([20, 40, 2], center=true);
minkowski() {
display_pie();
cylinder(r=7,h=0.1);
}
up(1.5) display_pie();
translate(-servo_shaft_pos) {
down(servo_core_size.z) servo();
}
display_mount_holes();
}
slices=20;
for (i = [0:slices]) {
zrot(i * (angle_max - angle_gap)/slices + angle_gap/2) fwd(display_needle_length) up(3) scale(i%5==0 ? 1 : 0.5) cube([1, 4, 2], center=true);
}
}
module servo_box() {
up(box_wall) translate(servo_box_pos) {
difference() {
cuboid(servo_box_size, chamfer=servo_box_round);
cuboid(servo_box_chamber, chamfer=servo_box_round);
}
translate(servo_box_screw_joiner_pos) {
fwd(20) screw_joiner(servo_box_screw_joiner_size, edges=EDGES_Z_RT);
back(20) screw_joiner(servo_box_screw_joiner_size, edges=EDGES_Z_RT);
}
}
}
module servo_box_divider(socket) {
up(3) {
difference() {
up(50 + servo_box_size.z/2 + 5) cube([500, 100, 100], center=true);
up(-box_wall) translate(servo_box_pos) scale(socket ? 1 : [0.97, 0.99, 0.98]) cube(servo_box_chamber_walled, center=true);
}
}
}
module model_display() {
up(box_wall) translate(display_pos) display();
}
module model_servo_box() {
difference() {
servo_box();
translate(display_pos) {
down(servo_core_size.z - 2) fwd(servo_gears_pos.y) servo();
display_mount_holes();
}
}
}
module model_servo_box_top() {
//up(box_wall + bank_inside_size.z/2)
intersection() {
model_servo_box();
servo_box_divider(socket=true);
}
model_display();
}
module model_servo_box_bottom() {
//up(box_wall + bank_inside_size.z/2)
difference() {
model_servo_box();
servo_box_divider(socket=false);
}
}
translate(display_pos) down(servo_core_size.z - 4) fwd(servo_gears_pos.y) %servo();
model_servo_box_top();
model_servo_box_bottom();

22
Vitamins.scad Normal file
View File

@ -0,0 +1,22 @@
include <BOSL/constants.scad>
use <BOSL/transforms.scad>
use <BOSL/shapes.scad>
switch_body_size = [8, 13, 16];
module switch() {
down(switch_body_size.z/2) cube(switch_body_size, center=true);
cylinder(d=6.5, h=8.5);
up(8.5) xrot(15) cylinder(d=2.5, h=10);
}
switch();
module screw_joiner(size, screw_diam=2.2, chamfer=1, edges=EDGES_Z_ALL) {
difference() {
cuboid(size, chamfer=chamfer, edges=edges);
down(size.z/2) cylinder(d=screw_diam, h=size.z, $fn=12);
}
}
left(20) screw_joiner([5, 5, 10]);

119
geiger_counter.ino Normal file
View File

@ -0,0 +1,119 @@
/*
* Geiger counter Kit could get on: https://www.aliexpress.com search: geiger counter kit
* --------------------------------------------------------------------------------------
* WHAT IS CPM?
* CPM (or counts per minute) is events quantity from Geiger Tube you get during one minute. Usually it used to
* calculate a radiation level. Different GM Tubes has different quantity of CPM for background. Some tubes can produce
* about 10-50 CPM for normal background, other GM Tube models produce 50-100 CPM or 0-5 CPM for same radiation level.
* Please refer your GM Tube datasheet for more information. Just for reference here, J305 and SBM-20 can generate
* about 10-50 CPM for normal background.
* --------------------------------------------------------------------------------------
* HOW TO CONNECT GEIGER KIT?
* The kit 3 wires that should be connected to Arduino UNO board: 5V, GND and INT. PullUp resistor is included on
* kit PCB. Connect INT wire to Digital Pin#2 (INT0), 5V to 5V, GND to GND. Then connect the Arduino with
* USB cable to the computer and upload this sketch.
*
* Author:JiangJie Zhang * If you have any questions, please connect cajoetech@qq.com
* Author:Dejvino
*
* License: MIT License
*
* Please use freely with attribution. Thank you!
*/
// include the Servo library
#include <Servo.h>
Servo myServo; // create a servo object
int const PIN_SERVO = 9;
int angle; // variable to hold the angle for the servo motor
int const PIN_TUBE 2;
int const PIN_FRESH = LED_BUILTIN;
int freshState = 0;
#include <SPI.h>
//#define LOG_PERIOD 15000 //Logging period in milliseconds, recommended value 15000-60000.
#define LOG_PERIOD 30000
#define MAX_PERIOD 60000 //Maximum logging period without modifying this sketch
unsigned long counts; //variable for GM Tube events
unsigned long cpm; //variable for CPM
unsigned int multiplier; //variable for calculation CPM in this sketch
unsigned long previousMillis; //variable for time measurement
int const subDiv = 60;
int const subTimespan = LOG_PERIOD / subDiv;
int subCounts = 0;
int subTime = 0;
void tube_impulse(){ //subprocedure for capturing events from Geiger Kit
counts++;
}
void setup(){ //setup subprocedure
myServo.attach(PIN_SERVO); // attaches the servo on pin 9 to the servo object
myServo.write(angle);
counts = 0;
cpm = 0;
multiplier = MAX_PERIOD / LOG_PERIOD; //calculating multiplier, depend on your log period
Serial.begin(9600);
attachInterrupt(0, tube_impulse, FALLING); //define external interrupts
pinMode(PIN_FRESH, OUTPUT);
digitalWrite(PIN_FRESH, LOW);
delay(500);
myServo.write(0);
delay(1000);
myServo.write(200);
delay(1000);
myServo.write(100);
delay(1000);
myServo.write(0);
}
void loop(){ //main cycle
unsigned long currentMillis = millis();
unsigned long timeDiff = currentMillis - previousMillis;
if (freshState == 1 && timeDiff > LOG_PERIOD / 4) {
freshState = 0;
digitalWrite(PIN_FRESH, LOW);
}
if(timeDiff > LOG_PERIOD){
previousMillis = currentMillis;
cpm = counts * multiplier;
angle = cpm;
//myServo.write(angle);
Serial.print("CPM: ");
Serial.println(cpm);
counts = 0;
digitalWrite(PIN_FRESH, HIGH);
freshState = 1;
subCounts = 0;
subTime = currentMillis;
}
int subDiff = currentMillis - subTime;
if (subDiff >= subTimespan) {
subTime = currentMillis;
int subTimeSteps = timeDiff / subTimespan;
subCounts = counts;
int change = (counts * multiplier) - (cpm * subTimeSteps / subDiv);
angle = cpm + change;
if (angle < 0) { angle = 0; }
if (angle > 200) { angle = 200; }
myServo.write(angle);
Serial.print("R: ");
Serial.print(angle);
Serial.println();
}
}